Sistema de alerta y notificación de variaciones en el patrón de conducción

Descripción del Articulo

Each year, the number of deaths from accidents in urban areas increases by 3% (INEI, 2018), due to reckless driving and inefficient safety systems to avoid car accidents, therefore, in Peru, the Need for a system that allows drivers to be audibly alerted when their driving pattern differs from usual...

Descripción completa

Detalles Bibliográficos
Autor: Franco Caldas, Kevyn Pool
Formato: tesis de grado
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/13855
Enlace del recurso:https://hdl.handle.net/20.500.12724/13855
Nivel de acceso:acceso abierto
Materia:Mobile apps
Traffic accidents
Aplicaciones móviles
Accidentes de tránsito
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Each year, the number of deaths from accidents in urban areas increases by 3% (INEI, 2018), due to reckless driving and inefficient safety systems to avoid car accidents, therefore, in Peru, the Need for a system that allows drivers to be audibly alerted when their driving pattern differs from usual and to avoid car accidents. The objective of this research is to develop a system that allows to generate alerts when driving that differs from the usual patterns is detected, applying the Kohonen Neural Network Model methodologies and the hidden Markov Model and implementing them in a mobile application for Android itself. . In the experimentation, two driving states were determined: "No accident" and "Previous Accident", where drivers between 20 and 30 years old, within a controlled area, showed on average that 86% of the time they accelerated when they were on the road. “Previous Accident” status, but it is also pointed out that the average probability of changing from “Previous Accident” to “No accident” status was 91%, which indicates a driving trend within the usual patterns. The results obtained for the generation of driving patterns allow the driver to be alerted when his driving style differs from the usual patterns and to avoid car accidents. This finding contributes to improving our understanding of the links between variability in driving patterns and the incidence of motor vehicle accidents.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).