Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi
Descripción del Articulo
El presente artículo tiene como objetivo elegir, bajo un determinado escenario, el mejor algoritmo supervisado de machine learning para localizar un terminal que soporte wifi. Se usa un dataset que cuenta con 2000 registros de Received Signal Strength Indicator (RSSI), obtenidos de 7 puntos de acces...
Autor: | |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2022 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/17521 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/17521 https://doi.org/10.26439/ciis2022.6074 |
Nivel de acceso: | acceso abierto |
Materia: | Pendiente https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
RULI_c6de9be7dc03f5fe1efadb4e63dd66f7 |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/17521 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.es_PE.fl_str_mv |
Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi |
title |
Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi |
spellingShingle |
Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi More Sánchez, Javier Pendiente https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi |
title_full |
Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi |
title_fullStr |
Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi |
title_full_unstemmed |
Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi |
title_sort |
Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi |
author |
More Sánchez, Javier |
author_facet |
More Sánchez, Javier |
author_role |
author |
dc.contributor.author.fl_str_mv |
More Sánchez, Javier |
dc.subject.es_PE.fl_str_mv |
Pendiente |
topic |
Pendiente https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
El presente artículo tiene como objetivo elegir, bajo un determinado escenario, el mejor algoritmo supervisado de machine learning para localizar un terminal que soporte wifi. Se usa un dataset que cuenta con 2000 registros de Received Signal Strength Indicator (RSSI), obtenidos de 7 puntos de acceso (AP), los cuales se cargan en 8 algoritmos supervisados de machine learning. Luego se elige el algoritmo que realiza la predicción más precisa, incluso cuando se cuenta con un menor número de AP. La mayor precisión se logra con el algoritmo naive Bayes, tanto para el caso de 7 AP (99 % de precisión) como para cuando se cuenta con un número menor de AP. Asimismo, se observa que los algoritmos basados en redes neuronales presentan el peor rendimiento. Finalmente, se proponen trabajos futuros para continuar con la investigación sobre el tema de localización de dispositivos wifi en interiores. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2023-01-31T16:23:55Z |
dc.date.available.none.fl_str_mv |
2023-01-31T16:23:55Z |
dc.date.issued.fl_str_mv |
2022 |
dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.other.none.fl_str_mv |
Artículo de conferencia |
format |
conferenceObject |
dc.identifier.citation.es_PE.fl_str_mv |
More Sánchez, J. (2022). Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi. En Universidad de Lima (Ed.), Entornos híbridos en la pospandemia: posibilidades para las nuevas tecnologías. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 111-122), Lima, 10 al 12 de octubre del 2022. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2022.6074 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/17521 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.26439/ciis2022.6074 |
identifier_str_mv |
More Sánchez, J. (2022). Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi. En Universidad de Lima (Ed.), Entornos híbridos en la pospandemia: posibilidades para las nuevas tecnologías. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 111-122), Lima, 10 al 12 de octubre del 2022. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2022.6074 |
url |
https://hdl.handle.net/20.500.12724/17521 https://doi.org/10.26439/ciis2022.6074 |
dc.language.iso.es_PE.fl_str_mv |
spa |
language |
spa |
dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.format.es_PE.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Universidad de Lima |
dc.publisher.country.es_PE.fl_str_mv |
PE |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima |
dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17521/2/license_rdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17521/3/license.txt |
bitstream.checksum.fl_str_mv |
8fc46f5e71650fd7adee84a69b9163c2 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1822513709893812224 |
spelling |
More Sánchez, Javier2023-01-31T16:23:55Z2023-01-31T16:23:55Z2022More Sánchez, J. (2022). Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifi. En Universidad de Lima (Ed.), Entornos híbridos en la pospandemia: posibilidades para las nuevas tecnologías. Actas del Congreso Internacional de Ingeniería de Sistemas (pp. 111-122), Lima, 10 al 12 de octubre del 2022. Universidad de Lima, Fondo Editorial. https://doi.org/10.26439/ciis2022.6074https://hdl.handle.net/20.500.12724/17521https://doi.org/10.26439/ciis2022.6074El presente artículo tiene como objetivo elegir, bajo un determinado escenario, el mejor algoritmo supervisado de machine learning para localizar un terminal que soporte wifi. Se usa un dataset que cuenta con 2000 registros de Received Signal Strength Indicator (RSSI), obtenidos de 7 puntos de acceso (AP), los cuales se cargan en 8 algoritmos supervisados de machine learning. Luego se elige el algoritmo que realiza la predicción más precisa, incluso cuando se cuenta con un menor número de AP. La mayor precisión se logra con el algoritmo naive Bayes, tanto para el caso de 7 AP (99 % de precisión) como para cuando se cuenta con un número menor de AP. Asimismo, se observa que los algoritmos basados en redes neuronales presentan el peor rendimiento. Finalmente, se proponen trabajos futuros para continuar con la investigación sobre el tema de localización de dispositivos wifi en interiores.Revisado por paresapplication/pdfspaUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPendientehttps://purl.org/pe-repo/ocde/ford#2.02.04Algoritmos supervisados de machine learning para determinar la ubicación de dispositivos wifiinfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17521/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17521/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/17521oai:repositorio.ulima.edu.pe:20.500.12724/175212023-11-07 13:26:31.685Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.959956 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).