Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
Descripción del Articulo
This research analyzes the demand for hair care products during the COVID-19 pandemic. Two forecasting models, Arima and Sarima, based on Machine Learning technology, were proposed to improve data analysis and supply chain management. The results showed that the SARIMA model had higher mean absolute...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/19479 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/19479 https://doi.org/10.14445/22315381/IJETT-V71I9P234 |
| Nivel de acceso: | acceso abierto |
| Materia: | Supply chain Hair preparations Machine learning Pandemics Cadena de suministro Productos capilares Aprendizaje automático Pandemias COVID-19 https://purl.org/pe-repo/ocde/ford#2.02.03 |
| id |
RULI_c51d66dd618887bff26f0d2c7d0b62dc |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/19479 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| spelling |
Kato Yoshida, Valeria MidoriMosquera Mendoza, Ivone BrigietheGarcía López, Yván JesúsQuiroz Flores, Juan CarlosGarcía López, Yván JesúsQuiroz Flores, Juan CarlosKato Yoshida, Valeria Midori (Ingeniería Industrial)Mosquera Mendoza, Ivone Brigiethe (Ingeniería Industrial)2023-12-13T17:08:10Z2023-12-13T17:08:10Z2023Kato Yoshida, M., Mosquera Mendoza, I., García López, I. J., & Quiroz Flores, J.C. (2023). Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach. International Journal of Engineering Trends and Technology, 71(9), 385-396. https://doi.org/10.14445/22315381/IJETT-V71I9P234https://hdl.handle.net/20.500.12724/19479International Journal of Engineering Trends and Technology0000000121541816https://doi.org/10.14445/22315381/IJETT-V71I9P2342-s2.0-85177024241This research analyzes the demand for hair care products during the COVID-19 pandemic. Two forecasting models, Arima and Sarima, based on Machine Learning technology, were proposed to improve data analysis and supply chain management. The results showed that the SARIMA model had higher mean absolute error levels than the Arima model. The study also analyzed the demand for four hair dyes using statistical models, finding that three had seasonal demand. The SARIMA model accurately predicted demand for most hair dyes except one. Errors in the predictions were measured using different indicators, and the SARIMA model had lower error levels than the Arima model. The study's results were validated and compared with previous research, showing that the SARIMA model predicted the demand for hair dyes. Overall, this study highlights the usefulness of Machine Learning models in demand analysis and supply chain management of hair care products during the COVID-19 pandemic. These findings provide a reference framework for manufacturing industries with similar characteristics that wish to optimize demand management using Machine Learning techniques.application/htmlengSeventh Sense Research GroupINinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMASupply chainHair preparationsMachine learningPandemicsCadena de suministroProductos capilaresAprendizaje automáticoPandemiasCOVID-19https://purl.org/pe-repo/ocde/ford#2.02.03Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approachinfo:eu-repo/semantics/articleArtículo en ScopusGarcía López, Yván Jesús (Ingeniería Industrial)García López, Yván Jesús (Faculty of Engineering, Career of Industrial Engineering, Universidad de Lima)920.500.12724/19479oai:repositorio.ulima.edu.pe:20.500.12724/194792025-03-06 19:40:00.814Repositorio Universidad de Limarepositorio@ulima.edu.pe |
| dc.title.en_EN.fl_str_mv |
Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach |
| title |
Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach |
| spellingShingle |
Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach Kato Yoshida, Valeria Midori Supply chain Hair preparations Machine learning Pandemics Cadena de suministro Productos capilares Aprendizaje automático Pandemias COVID-19 https://purl.org/pe-repo/ocde/ford#2.02.03 |
| title_short |
Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach |
| title_full |
Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach |
| title_fullStr |
Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach |
| title_full_unstemmed |
Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach |
| title_sort |
Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach |
| author |
Kato Yoshida, Valeria Midori |
| author_facet |
Kato Yoshida, Valeria Midori Mosquera Mendoza, Ivone Brigiethe García López, Yván Jesús Quiroz Flores, Juan Carlos |
| author_role |
author |
| author2 |
Mosquera Mendoza, Ivone Brigiethe García López, Yván Jesús Quiroz Flores, Juan Carlos |
| author2_role |
author author author |
| dc.contributor.other.none.fl_str_mv |
García López, Yván Jesús Quiroz Flores, Juan Carlos |
| dc.contributor.student.none.fl_str_mv |
Kato Yoshida, Valeria Midori (Ingeniería Industrial) Mosquera Mendoza, Ivone Brigiethe (Ingeniería Industrial) |
| dc.contributor.author.fl_str_mv |
Kato Yoshida, Valeria Midori Mosquera Mendoza, Ivone Brigiethe García López, Yván Jesús Quiroz Flores, Juan Carlos |
| dc.subject.en_EN.fl_str_mv |
Supply chain Hair preparations Machine learning Pandemics |
| topic |
Supply chain Hair preparations Machine learning Pandemics Cadena de suministro Productos capilares Aprendizaje automático Pandemias COVID-19 https://purl.org/pe-repo/ocde/ford#2.02.03 |
| dc.subject.es_PE.fl_str_mv |
Cadena de suministro Productos capilares Aprendizaje automático Pandemias COVID-19 |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.03 |
| description |
This research analyzes the demand for hair care products during the COVID-19 pandemic. Two forecasting models, Arima and Sarima, based on Machine Learning technology, were proposed to improve data analysis and supply chain management. The results showed that the SARIMA model had higher mean absolute error levels than the Arima model. The study also analyzed the demand for four hair dyes using statistical models, finding that three had seasonal demand. The SARIMA model accurately predicted demand for most hair dyes except one. Errors in the predictions were measured using different indicators, and the SARIMA model had lower error levels than the Arima model. The study's results were validated and compared with previous research, showing that the SARIMA model predicted the demand for hair dyes. Overall, this study highlights the usefulness of Machine Learning models in demand analysis and supply chain management of hair care products during the COVID-19 pandemic. These findings provide a reference framework for manufacturing industries with similar characteristics that wish to optimize demand management using Machine Learning techniques. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2023-12-13T17:08:10Z |
| dc.date.available.none.fl_str_mv |
2023-12-13T17:08:10Z |
| dc.date.issued.fl_str_mv |
2023 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo en Scopus |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Kato Yoshida, M., Mosquera Mendoza, I., García López, I. J., & Quiroz Flores, J.C. (2023). Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach. International Journal of Engineering Trends and Technology, 71(9), 385-396. https://doi.org/10.14445/22315381/IJETT-V71I9P234 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/19479 |
| dc.identifier.journal.none.fl_str_mv |
International Journal of Engineering Trends and Technology |
| dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14445/22315381/IJETT-V71I9P234 |
| dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85177024241 |
| identifier_str_mv |
Kato Yoshida, M., Mosquera Mendoza, I., García López, I. J., & Quiroz Flores, J.C. (2023). Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach. International Journal of Engineering Trends and Technology, 71(9), 385-396. https://doi.org/10.14445/22315381/IJETT-V71I9P234 International Journal of Engineering Trends and Technology 0000000121541816 2-s2.0-85177024241 |
| url |
https://hdl.handle.net/20.500.12724/19479 https://doi.org/10.14445/22315381/IJETT-V71I9P234 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/html |
| dc.publisher.none.fl_str_mv |
Seventh Sense Research Group |
| dc.publisher.country.none.fl_str_mv |
IN |
| publisher.none.fl_str_mv |
Seventh Sense Research Group |
| dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1847246763288690688 |
| score |
13.0499325 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).