Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach

Descripción del Articulo

This research analyzes the demand for hair care products during the COVID-19 pandemic. Two forecasting models, Arima and Sarima, based on Machine Learning technology, were proposed to improve data analysis and supply chain management. The results showed that the SARIMA model had higher mean absolute...

Descripción completa

Detalles Bibliográficos
Autores: Kato Yoshida, Valeria Midori, Mosquera Mendoza, Ivone Brigiethe, García López, Yván Jesús, Quiroz Flores, Juan Carlos
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/19479
Enlace del recurso:https://hdl.handle.net/20.500.12724/19479
https://doi.org/10.14445/22315381/IJETT-V71I9P234
Nivel de acceso:acceso abierto
Materia:Supply chain
Hair preparations
Machine learning
Pandemics
Cadena de suministro
Productos capilares
Aprendizaje automático
Pandemias
COVID-19
https://purl.org/pe-repo/ocde/ford#2.02.03
id RULI_c51d66dd618887bff26f0d2c7d0b62dc
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/19479
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
spelling Kato Yoshida, Valeria MidoriMosquera Mendoza, Ivone BrigietheGarcía López, Yván JesúsQuiroz Flores, Juan CarlosGarcía López, Yván JesúsQuiroz Flores, Juan CarlosKato Yoshida, Valeria Midori (Ingeniería Industrial)Mosquera Mendoza, Ivone Brigiethe (Ingeniería Industrial)2023-12-13T17:08:10Z2023-12-13T17:08:10Z2023Kato Yoshida, M., Mosquera Mendoza, I., García López, I. J., & Quiroz Flores, J.C. (2023). Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach. International Journal of Engineering Trends and Technology, 71(9), 385-396. https://doi.org/10.14445/22315381/IJETT-V71I9P234https://hdl.handle.net/20.500.12724/19479International Journal of Engineering Trends and Technology0000000121541816https://doi.org/10.14445/22315381/IJETT-V71I9P2342-s2.0-85177024241This research analyzes the demand for hair care products during the COVID-19 pandemic. Two forecasting models, Arima and Sarima, based on Machine Learning technology, were proposed to improve data analysis and supply chain management. The results showed that the SARIMA model had higher mean absolute error levels than the Arima model. The study also analyzed the demand for four hair dyes using statistical models, finding that three had seasonal demand. The SARIMA model accurately predicted demand for most hair dyes except one. Errors in the predictions were measured using different indicators, and the SARIMA model had lower error levels than the Arima model. The study's results were validated and compared with previous research, showing that the SARIMA model predicted the demand for hair dyes. Overall, this study highlights the usefulness of Machine Learning models in demand analysis and supply chain management of hair care products during the COVID-19 pandemic. These findings provide a reference framework for manufacturing industries with similar characteristics that wish to optimize demand management using Machine Learning techniques.application/htmlengSeventh Sense Research GroupINinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMASupply chainHair preparationsMachine learningPandemicsCadena de suministroProductos capilaresAprendizaje automáticoPandemiasCOVID-19https://purl.org/pe-repo/ocde/ford#2.02.03Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approachinfo:eu-repo/semantics/articleArtículo en ScopusGarcía López, Yván Jesús (Ingeniería Industrial)García López, Yván Jesús (Faculty of Engineering, Career of Industrial Engineering, Universidad de Lima)920.500.12724/19479oai:repositorio.ulima.edu.pe:20.500.12724/194792025-03-06 19:40:00.814Repositorio Universidad de Limarepositorio@ulima.edu.pe
dc.title.en_EN.fl_str_mv Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
title Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
spellingShingle Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
Kato Yoshida, Valeria Midori
Supply chain
Hair preparations
Machine learning
Pandemics
Cadena de suministro
Productos capilares
Aprendizaje automático
Pandemias
COVID-19
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
title_full Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
title_fullStr Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
title_full_unstemmed Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
title_sort Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach
author Kato Yoshida, Valeria Midori
author_facet Kato Yoshida, Valeria Midori
Mosquera Mendoza, Ivone Brigiethe
García López, Yván Jesús
Quiroz Flores, Juan Carlos
author_role author
author2 Mosquera Mendoza, Ivone Brigiethe
García López, Yván Jesús
Quiroz Flores, Juan Carlos
author2_role author
author
author
dc.contributor.other.none.fl_str_mv García López, Yván Jesús
Quiroz Flores, Juan Carlos
dc.contributor.student.none.fl_str_mv Kato Yoshida, Valeria Midori (Ingeniería Industrial)
Mosquera Mendoza, Ivone Brigiethe (Ingeniería Industrial)
dc.contributor.author.fl_str_mv Kato Yoshida, Valeria Midori
Mosquera Mendoza, Ivone Brigiethe
García López, Yván Jesús
Quiroz Flores, Juan Carlos
dc.subject.en_EN.fl_str_mv Supply chain
Hair preparations
Machine learning
Pandemics
topic Supply chain
Hair preparations
Machine learning
Pandemics
Cadena de suministro
Productos capilares
Aprendizaje automático
Pandemias
COVID-19
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.es_PE.fl_str_mv Cadena de suministro
Productos capilares
Aprendizaje automático
Pandemias
COVID-19
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description This research analyzes the demand for hair care products during the COVID-19 pandemic. Two forecasting models, Arima and Sarima, based on Machine Learning technology, were proposed to improve data analysis and supply chain management. The results showed that the SARIMA model had higher mean absolute error levels than the Arima model. The study also analyzed the demand for four hair dyes using statistical models, finding that three had seasonal demand. The SARIMA model accurately predicted demand for most hair dyes except one. Errors in the predictions were measured using different indicators, and the SARIMA model had lower error levels than the Arima model. The study's results were validated and compared with previous research, showing that the SARIMA model predicted the demand for hair dyes. Overall, this study highlights the usefulness of Machine Learning models in demand analysis and supply chain management of hair care products during the COVID-19 pandemic. These findings provide a reference framework for manufacturing industries with similar characteristics that wish to optimize demand management using Machine Learning techniques.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-13T17:08:10Z
dc.date.available.none.fl_str_mv 2023-12-13T17:08:10Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Kato Yoshida, M., Mosquera Mendoza, I., García López, I. J., & Quiroz Flores, J.C. (2023). Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach. International Journal of Engineering Trends and Technology, 71(9), 385-396. https://doi.org/10.14445/22315381/IJETT-V71I9P234
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/19479
dc.identifier.journal.none.fl_str_mv International Journal of Engineering Trends and Technology
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.14445/22315381/IJETT-V71I9P234
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85177024241
identifier_str_mv Kato Yoshida, M., Mosquera Mendoza, I., García López, I. J., & Quiroz Flores, J.C. (2023). Improving Demand Analysis and Supply Chain Management for Hair Products During the COVID-19 Pandemic: A Machine Learning Approach. International Journal of Engineering Trends and Technology, 71(9), 385-396. https://doi.org/10.14445/22315381/IJETT-V71I9P234
International Journal of Engineering Trends and Technology
0000000121541816
2-s2.0-85177024241
url https://hdl.handle.net/20.500.12724/19479
https://doi.org/10.14445/22315381/IJETT-V71I9P234
dc.language.iso.none.fl_str_mv eng
language eng
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Seventh Sense Research Group
dc.publisher.country.none.fl_str_mv IN
publisher.none.fl_str_mv Seventh Sense Research Group
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1847246763288690688
score 13.0499325
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).