Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease

Descripción del Articulo

Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detecti...

Descripción completa

Detalles Bibliográficos
Autores: Vasquez Gonzaga, Hillary Dayanna, Gutiérrez Cárdenas, Juan Manuel
Formato: objeto de conferencia
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17543
Enlace del recurso:https://hdl.handle.net/20.500.12724/17543
https://doi.org/10.1145/3480433.3480451
Nivel de acceso:acceso abierto
Materia:Enfermedades cardiovasculares
Enfermedades coronarias
Biosensores
Aprendizaje automático
Cardiovascular diseases
Coronary diseases
Biosensors
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detection of these illnesses. In the present work, we have used the Sani Z-Alizadeh dataset, which comprises a set of different medical features extracted with not invasive methods and used with different machine learning models. The comparisons performed showed that the best results were using a complete set and a subset of features as input for the Random Forest and XGBoost algorithms. Considering the results obtained, we believe that using a complete set of features gives insights that the features should also be analyzed by considering the medical advances and findings of how these markers influence a CAD disease's presence.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).