Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease

Descripción del Articulo

Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detecti...

Descripción completa

Detalles Bibliográficos
Autores: Vasquez Gonzaga, Hillary Dayanna, Gutiérrez Cárdenas, Juan Manuel
Formato: objeto de conferencia
Fecha de Publicación:2021
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/17543
Enlace del recurso:https://hdl.handle.net/20.500.12724/17543
https://doi.org/10.1145/3480433.3480451
Nivel de acceso:acceso abierto
Materia:Enfermedades cardiovasculares
Enfermedades coronarias
Biosensores
Aprendizaje automático
Cardiovascular diseases
Coronary diseases
Biosensors
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_c3200b4bbf49f7ce43e1c76bcd47722c
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/17543
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.es_PE.fl_str_mv Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
title Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
spellingShingle Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
Vasquez Gonzaga, Hillary Dayanna
Enfermedades cardiovasculares
Enfermedades coronarias
Biosensores
Aprendizaje automático
Cardiovascular diseases
Coronary diseases
Biosensors
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
title_full Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
title_fullStr Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
title_full_unstemmed Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
title_sort Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
author Vasquez Gonzaga, Hillary Dayanna
author_facet Vasquez Gonzaga, Hillary Dayanna
Gutiérrez Cárdenas, Juan Manuel
author_role author
author2 Gutiérrez Cárdenas, Juan Manuel
author2_role author
dc.contributor.other.none.fl_str_mv Gutiérrez Cárdenas, Juan Manuel
dc.contributor.student.none.fl_str_mv Vasquez Gonzaga, Hillary Dayanna (Ingeniería de Sistemas)
dc.contributor.author.fl_str_mv Vasquez Gonzaga, Hillary Dayanna
Gutiérrez Cárdenas, Juan Manuel
dc.subject.es_PE.fl_str_mv Enfermedades cardiovasculares
Enfermedades coronarias
Biosensores
Aprendizaje automático
Cardiovascular diseases
Coronary diseases
Biosensors
Machine learning
topic Enfermedades cardiovasculares
Enfermedades coronarias
Biosensores
Aprendizaje automático
Cardiovascular diseases
Coronary diseases
Biosensors
Machine learning
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detection of these illnesses. In the present work, we have used the Sani Z-Alizadeh dataset, which comprises a set of different medical features extracted with not invasive methods and used with different machine learning models. The comparisons performed showed that the best results were using a complete set and a subset of features as input for the Random Forest and XGBoost algorithms. Considering the results obtained, we believe that using a complete set of features gives insights that the features should also be analyzed by considering the medical advances and findings of how these markers influence a CAD disease's presence.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2023-02-06T17:19:47Z
dc.date.available.none.fl_str_mv 2023-02-06T17:19:47Z
dc.date.issued.fl_str_mv 2021
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.other.none.fl_str_mv Artículo de conferencia en Scopus
format conferenceObject
dc.identifier.citation.es_PE.fl_str_mv Vasquez-Gonzaga, H. & Gutiérrez-Cárdenas, J. (2021). Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease. In 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 98-103). https://doi.org/10.1145/3480433.3480451
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/17543
dc.identifier.event.none.fl_str_mv ACM International Conference Proceeding Series
dc.identifier.doi.none.fl_str_mv https://doi.org/10.1145/3480433.3480451
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85119206955
identifier_str_mv Vasquez-Gonzaga, H. & Gutiérrez-Cárdenas, J. (2021). Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease. In 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 98-103). https://doi.org/10.1145/3480433.3480451
ACM International Conference Proceeding Series
2-s2.0-85119206955
url https://hdl.handle.net/20.500.12724/17543
https://doi.org/10.1145/3480433.3480451
dc.language.iso.none.fl_str_mv spa
language spa
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Association for Computing Machinery
dc.publisher.country.es_PE.fl_str_mv US
dc.source.es_PE.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17543/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17543/3/license.txt
bitstream.checksum.fl_str_mv 8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1845977406257496064
spelling Vasquez Gonzaga, Hillary DayannaGutiérrez Cárdenas, Juan ManuelGutiérrez Cárdenas, Juan ManuelVasquez Gonzaga, Hillary Dayanna (Ingeniería de Sistemas)2023-02-06T17:19:47Z2023-02-06T17:19:47Z2021Vasquez-Gonzaga, H. & Gutiérrez-Cárdenas, J. (2021). Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease. In 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 98-103). https://doi.org/10.1145/3480433.3480451https://hdl.handle.net/20.500.12724/17543ACM International Conference Proceeding Serieshttps://doi.org/10.1145/3480433.34804512-s2.0-85119206955Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detection of these illnesses. In the present work, we have used the Sani Z-Alizadeh dataset, which comprises a set of different medical features extracted with not invasive methods and used with different machine learning models. The comparisons performed showed that the best results were using a complete set and a subset of features as input for the Random Forest and XGBoost algorithms. Considering the results obtained, we believe that using a complete set of features gives insights that the features should also be analyzed by considering the medical advances and findings of how these markers influence a CAD disease's presence.application/pdfspaAssociation for Computing MachineryUSinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAEnfermedades cardiovascularesEnfermedades coronariasBiosensoresAprendizaje automáticoCardiovascular diseasesCoronary diseasesBiosensorsMachine learninghttps://purl.org/pe-repo/ocde/ford#2.02.04Comparison of Supervised Learning Models for the Prediction of Coronary Artery Diseaseinfo:eu-repo/semantics/conferenceObjectArtículo de conferencia en ScopusIngeniería de SistemasUniversidad de Lima9CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17543/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17543/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/17543oai:repositorio.ulima.edu.pe:20.500.12724/175432025-03-06 19:25:47.727Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.02468
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).