Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease
Descripción del Articulo
Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detecti...
Autores: | , |
---|---|
Formato: | objeto de conferencia |
Fecha de Publicación: | 2021 |
Institución: | Universidad de Lima |
Repositorio: | ULIMA-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/17543 |
Enlace del recurso: | https://hdl.handle.net/20.500.12724/17543 https://doi.org/10.1145/3480433.3480451 |
Nivel de acceso: | acceso abierto |
Materia: | Enfermedades cardiovasculares Enfermedades coronarias Biosensores Aprendizaje automático Cardiovascular diseases Coronary diseases Biosensors Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04 |
id |
RULI_c3200b4bbf49f7ce43e1c76bcd47722c |
---|---|
oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/17543 |
network_acronym_str |
RULI |
network_name_str |
ULIMA-Institucional |
repository_id_str |
3883 |
dc.title.es_PE.fl_str_mv |
Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease |
title |
Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease |
spellingShingle |
Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease Vasquez Gonzaga, Hillary Dayanna Enfermedades cardiovasculares Enfermedades coronarias Biosensores Aprendizaje automático Cardiovascular diseases Coronary diseases Biosensors Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04 |
title_short |
Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease |
title_full |
Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease |
title_fullStr |
Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease |
title_full_unstemmed |
Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease |
title_sort |
Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease |
author |
Vasquez Gonzaga, Hillary Dayanna |
author_facet |
Vasquez Gonzaga, Hillary Dayanna Gutiérrez Cárdenas, Juan Manuel |
author_role |
author |
author2 |
Gutiérrez Cárdenas, Juan Manuel |
author2_role |
author |
dc.contributor.other.none.fl_str_mv |
Gutiérrez Cárdenas, Juan Manuel |
dc.contributor.student.none.fl_str_mv |
Vasquez Gonzaga, Hillary Dayanna (Ingeniería de Sistemas) |
dc.contributor.author.fl_str_mv |
Vasquez Gonzaga, Hillary Dayanna Gutiérrez Cárdenas, Juan Manuel |
dc.subject.es_PE.fl_str_mv |
Enfermedades cardiovasculares Enfermedades coronarias Biosensores Aprendizaje automático Cardiovascular diseases Coronary diseases Biosensors Machine learning |
topic |
Enfermedades cardiovasculares Enfermedades coronarias Biosensores Aprendizaje automático Cardiovascular diseases Coronary diseases Biosensors Machine learning https://purl.org/pe-repo/ocde/ford#2.02.04 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
description |
Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detection of these illnesses. In the present work, we have used the Sani Z-Alizadeh dataset, which comprises a set of different medical features extracted with not invasive methods and used with different machine learning models. The comparisons performed showed that the best results were using a complete set and a subset of features as input for the Random Forest and XGBoost algorithms. Considering the results obtained, we believe that using a complete set of features gives insights that the features should also be analyzed by considering the medical advances and findings of how these markers influence a CAD disease's presence. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2023-02-06T17:19:47Z |
dc.date.available.none.fl_str_mv |
2023-02-06T17:19:47Z |
dc.date.issued.fl_str_mv |
2021 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
dc.type.other.none.fl_str_mv |
Artículo de conferencia en Scopus |
format |
conferenceObject |
dc.identifier.citation.es_PE.fl_str_mv |
Vasquez-Gonzaga, H. & Gutiérrez-Cárdenas, J. (2021). Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease. In 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 98-103). https://doi.org/10.1145/3480433.3480451 |
dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/17543 |
dc.identifier.event.none.fl_str_mv |
ACM International Conference Proceeding Series |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1145/3480433.3480451 |
dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85119206955 |
identifier_str_mv |
Vasquez-Gonzaga, H. & Gutiérrez-Cárdenas, J. (2021). Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease. In 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 98-103). https://doi.org/10.1145/3480433.3480451 ACM International Conference Proceeding Series 2-s2.0-85119206955 |
url |
https://hdl.handle.net/20.500.12724/17543 https://doi.org/10.1145/3480433.3480451 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es_PE.fl_str_mv |
Association for Computing Machinery |
dc.publisher.country.es_PE.fl_str_mv |
US |
dc.source.es_PE.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima |
dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
instname_str |
Universidad de Lima |
instacron_str |
ULIMA |
institution |
ULIMA |
reponame_str |
ULIMA-Institucional |
collection |
ULIMA-Institucional |
bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17543/2/license_rdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17543/3/license.txt |
bitstream.checksum.fl_str_mv |
8fc46f5e71650fd7adee84a69b9163c2 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Universidad de Lima |
repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
_version_ |
1845977406257496064 |
spelling |
Vasquez Gonzaga, Hillary DayannaGutiérrez Cárdenas, Juan ManuelGutiérrez Cárdenas, Juan ManuelVasquez Gonzaga, Hillary Dayanna (Ingeniería de Sistemas)2023-02-06T17:19:47Z2023-02-06T17:19:47Z2021Vasquez-Gonzaga, H. & Gutiérrez-Cárdenas, J. (2021). Comparison of Supervised Learning Models for the Prediction of Coronary Artery Disease. In 2021 5th International Conference on Artificial Intelligence and Virtual Reality (AIVR) (pp. 98-103). https://doi.org/10.1145/3480433.3480451https://hdl.handle.net/20.500.12724/17543ACM International Conference Proceeding Serieshttps://doi.org/10.1145/3480433.34804512-s2.0-85119206955Cardiovascular diseases and Coronary Artery Disease (CAD) are the leading causes of mortality among people of different ages and conditions. The use of different and not so invasive biomarkers to detect these types of diseases joined with Machine Learning techniques seems promising for early detection of these illnesses. In the present work, we have used the Sani Z-Alizadeh dataset, which comprises a set of different medical features extracted with not invasive methods and used with different machine learning models. The comparisons performed showed that the best results were using a complete set and a subset of features as input for the Random Forest and XGBoost algorithms. Considering the results obtained, we believe that using a complete set of features gives insights that the features should also be analyzed by considering the medical advances and findings of how these markers influence a CAD disease's presence.application/pdfspaAssociation for Computing MachineryUSinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAEnfermedades cardiovascularesEnfermedades coronariasBiosensoresAprendizaje automáticoCardiovascular diseasesCoronary diseasesBiosensorsMachine learninghttps://purl.org/pe-repo/ocde/ford#2.02.04Comparison of Supervised Learning Models for the Prediction of Coronary Artery Diseaseinfo:eu-repo/semantics/conferenceObjectArtículo de conferencia en ScopusIngeniería de SistemasUniversidad de Lima9CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17543/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/17543/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/17543oai:repositorio.ulima.edu.pe:20.500.12724/175432025-03-06 19:25:47.727Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
score |
13.02468 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).