Predicción de postulantes que cometerán fraude interno con algoritmo de aprendizaje supervisado

Descripción del Articulo

Internal fraud is a big issue for companies, resulting in relevant monetary losses. Several investigations have proposed improvements to the personnel selection process making using of Data Mining. The present work proposes to use past information of applicants to a company to predict if they will c...

Descripción completa

Detalles Bibliográficos
Autor: Espinoza Montalvo, Sergio Ernesto
Formato: tesis de grado
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/12355
Enlace del recurso:https://hdl.handle.net/20.500.12724/12355
Nivel de acceso:acceso abierto
Materia:Data mining
Fraud
Employee selection
Míneria de datos
Fraude
Selección de personal
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:Internal fraud is a big issue for companies, resulting in relevant monetary losses. Several investigations have proposed improvements to the personnel selection process making using of Data Mining. The present work proposes to use past information of applicants to a company to predict if they will commit fraud during their stay. We find models with high precision, but that have a bigger classification error to find the fraud cases. After several experiments, we find around 13 features of this universe that are most relevant to the model. Some of these features match with features mentioned in literature about antisocial disorders. We conclude that there is value in applicant information to predict if they will commit internal fraud during their stay in the company.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).