Comparación entre regresión logística y redes neuronales para predecir cáncer de piel en perros

Descripción del Articulo

To ascertain if a dog has the predisposition to develop skin cancer is a challenge for both veterinarians and pet owners. Logistic regression models and neural networks have been used widely in the field of human medicine to make predictions; the present study approaches the comparison between these...

Descripción completa

Detalles Bibliográficos
Autor: Chávez Martínez, Renato
Formato: tesis de grado
Fecha de Publicación:2019
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/8401
Enlace del recurso:https://hdl.handle.net/20.500.12724/8401
http://doi.org/10.26439/ulima.tesis/8401
Nivel de acceso:acceso abierto
Materia:Cáncer
Perros
Prospectiva
Cancer
Forecasting
Dogs
https://purl.org/pe-repo/ocde/ford#2.02.04
Descripción
Sumario:To ascertain if a dog has the predisposition to develop skin cancer is a challenge for both veterinarians and pet owners. Logistic regression models and neural networks have been used widely in the field of human medicine to make predictions; the present study approaches the comparison between these two technics to predict skin cancer in dogs. The variables we analyzed were age, sex, breed, sun exposition, albinism and, dermatitis. These variables were validated by the correlation coefficient and the principal component analysis. The obtained results showed that the backpropagation neural network technique with a cross validation is better than the logistic regression. The neural network’s accuracy value was 89.6% while only 84% for the logistic regression.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).