Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features

Descripción del Articulo

In recent years, dynamic user verification has become one of the basic pillars for insider threat detection. From these threats, the research presented in this paper focuses on masquerader attacks, a category of insiders characterized by being intentionally conducted by persons outside the organizat...

Descripción completa

Detalles Bibliográficos
Autores: Maestre Vidal, Jorge, Sotelo Monge, Marco Antonio
Formato: artículo
Fecha de Publicación:2020
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/10834
Enlace del recurso:https://hdl.handle.net/20.500.12724/10834
https://doi.org/10.3390/s20072084
Nivel de acceso:acceso abierto
Materia:Computer security
Data protection
Protección de datos
Seguridad informática
https://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_7fa9e2f7e542f244ecd5cb1658f8b178
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/10834
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en_EN.fl_str_mv Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features
title Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features
spellingShingle Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features
Maestre Vidal, Jorge
Computer security
Data protection
Protección de datos
Seguridad informática
https://purl.org/pe-repo/ocde/ford#2.02.04
title_short Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features
title_full Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features
title_fullStr Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features
title_full_unstemmed Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features
title_sort Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features
author Maestre Vidal, Jorge
author_facet Maestre Vidal, Jorge
Sotelo Monge, Marco Antonio
author_role author
author2 Sotelo Monge, Marco Antonio
author2_role author
dc.contributor.other.none.fl_str_mv Sotelo Monge, Marco Antonio
dc.contributor.author.fl_str_mv Maestre Vidal, Jorge
Sotelo Monge, Marco Antonio
dc.subject.en_EN.fl_str_mv Computer security
Data protection
topic Computer security
Data protection
Protección de datos
Seguridad informática
https://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.es_PE.fl_str_mv Protección de datos
Seguridad informática
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.04
description In recent years, dynamic user verification has become one of the basic pillars for insider threat detection. From these threats, the research presented in this paper focuses on masquerader attacks, a category of insiders characterized by being intentionally conducted by persons outside the organization that somehow were able to impersonate legitimate users. Consequently, it is assumed that masqueraders are unaware of the protected environment within the targeted organization, so it is expected that they move in a more erratic manner than legitimate users along the compromised systems. This feature makes them susceptible to being discovered by dynamic user verification methods based on user profiling and anomaly-based intrusion detection. However, these approaches are susceptible to evasion through the imitation of the normal legitimate usage of the protected system (mimicry), which is being widely exploited by intruders. In order to contribute to their understanding, as well as anticipating their evolution, the conducted research focuses on the study of mimicry from the standpoint of an uncharted terrain: the masquerade detection based on analyzing locality traits. With this purpose, the problem is widely stated, and a pair of novel obfuscation methods are introduced: locality-based mimicry by action pruning and locality-based mimicry by noise generation. Their modus operandi, effectiveness, and impact are evaluated by a collection of well-known classifiers typically implemented for masquerade detection. The simplicity and effectiveness demonstrated suggest that they entail attack vectors that should be taken into consideration for the proper hardening of real organizations.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-05-05T16:17:36Z
dc.date.available.none.fl_str_mv 2020-05-05T16:17:36Z
dc.date.issued.fl_str_mv 2020
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Maestre Vidal, J. y Sotelo Monge, M. A. (2020). Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features. Sensors, 20(7). https://doi.org/10.3390/s20072084
dc.identifier.issn.none.fl_str_mv 14248220
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/10834
dc.identifier.journal.none.fl_str_mv Sensors
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.3390/s20072084
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85083849678
identifier_str_mv Maestre Vidal, J. y Sotelo Monge, M. A. (2020). Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features. Sensors, 20(7). https://doi.org/10.3390/s20072084
14248220
Sensors
0000000121541816
2-s2.0-85083849678
url https://hdl.handle.net/20.500.12724/10834
https://doi.org/10.3390/s20072084
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:1424-8220
dc.relation.uri.none.fl_str_mv https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181010/
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv NLM (Medline)
dc.publisher.country.none.fl_str_mv CH
publisher.none.fl_str_mv NLM (Medline)
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/10834/2/license_rdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/10834/3/license.txt
bitstream.checksum.fl_str_mv 8fc46f5e71650fd7adee84a69b9163c2
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1844709908985937920
spelling Maestre Vidal, JorgeSotelo Monge, Marco AntonioSotelo Monge, Marco Antonio2020-05-05T16:17:36Z2020-05-05T16:17:36Z2020Maestre Vidal, J. y Sotelo Monge, M. A. (2020). Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Features. Sensors, 20(7). https://doi.org/10.3390/s2007208414248220https://hdl.handle.net/20.500.12724/10834Sensors0000000121541816https://doi.org/10.3390/s200720842-s2.0-85083849678In recent years, dynamic user verification has become one of the basic pillars for insider threat detection. From these threats, the research presented in this paper focuses on masquerader attacks, a category of insiders characterized by being intentionally conducted by persons outside the organization that somehow were able to impersonate legitimate users. Consequently, it is assumed that masqueraders are unaware of the protected environment within the targeted organization, so it is expected that they move in a more erratic manner than legitimate users along the compromised systems. This feature makes them susceptible to being discovered by dynamic user verification methods based on user profiling and anomaly-based intrusion detection. However, these approaches are susceptible to evasion through the imitation of the normal legitimate usage of the protected system (mimicry), which is being widely exploited by intruders. In order to contribute to their understanding, as well as anticipating their evolution, the conducted research focuses on the study of mimicry from the standpoint of an uncharted terrain: the masquerade detection based on analyzing locality traits. With this purpose, the problem is widely stated, and a pair of novel obfuscation methods are introduced: locality-based mimicry by action pruning and locality-based mimicry by noise generation. Their modus operandi, effectiveness, and impact are evaluated by a collection of well-known classifiers typically implemented for masquerade detection. The simplicity and effectiveness demonstrated suggest that they entail attack vectors that should be taken into consideration for the proper hardening of real organizations.application/htmlengNLM (Medline)CHurn:issn:1424-8220https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7181010/info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAComputer securityData protectionProtección de datosSeguridad informáticahttps://purl.org/pe-repo/ocde/ford#2.02.04Obfuscation of Malicious Behaviors for Thwarting Masquerade Detection Systems Based on Locality Featuresinfo:eu-repo/semantics/articleArtículo en ScopusIngeniería de SistemasFaculty of Engineering and Architecture, Universidad de LimaOICC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81037https://repositorio.ulima.edu.pe/bitstream/20.500.12724/10834/2/license_rdf8fc46f5e71650fd7adee84a69b9163c2MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/10834/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.12724/10834oai:repositorio.ulima.edu.pe:20.500.12724/108342025-03-06 19:40:01.684Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 12.82117
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).