1
objeto de conferencia
Publicado 2020
Enlace
Enlace
Los sistemas de red emergentes han traído consigo nuevas amenazas que han sofisticado sus modos de operación con el fin de pasar inadvertidos por los sistemas de seguridad, lo que ha motivado el desarrollo de sistemas de detección de intrusiones más eficaces y capaces de reconocer comportamientos anómalos. A pesar de la efectividad de estos sistemas, la investigación en este campo revela la necesidad de su adaptación constante a los cambios del entorno operativo como el principal desafío a afrontar. Esta adaptación supone mayores dificultades analíticas, en particular cuando se hace frente a amenazas de evasión mediante métodos de imitación. Dichas amenazas intentan ocultar las acciones maliciosas bajo un patrón estadístico que simula el uso normal de la red, por lo que adquieren una mayor probabilidad de evadir los sistemas defensivos. Con el fin de contribuir a su mitiga...
2
artículo
Publicado 2020
Enlace
Enlace
In recent years, dynamic user verification has become one of the basic pillars for insider threat detection. From these threats, the research presented in this paper focuses on masquerader attacks, a category of insiders characterized by being intentionally conducted by persons outside the organization that somehow were able to impersonate legitimate users. Consequently, it is assumed that masqueraders are unaware of the protected environment within the targeted organization, so it is expected that they move in a more erratic manner than legitimate users along the compromised systems. This feature makes them susceptible to being discovered by dynamic user verification methods based on user profiling and anomaly-based intrusion detection. However, these approaches are susceptible to evasion through the imitation of the normal legitimate usage of the protected system (mimicry), which is be...
3
artículo
Publicado 2020
Enlace
Enlace
Botnets are some of the most recurrent cyber-threats, which take advantage of the wide heterogeneity of endpoint devices at the Edge of the emerging communication environments for enabling the malicious enforcement of fraud and other adversarial tactics, including malware, data leaks or denial of service. There have been significant research advances in the development of accurate botnet detection methods underpinned on supervised analysis but assessing the accuracy and performance of such detection methods requires a clear evaluation model in the pursuit of enforcing proper defensive strategies. In order to contribute to the mitigation of botnets, this paper introduces a novel evaluation scheme grounded on supervised machine learning algorithms that enable the detection and discrimination of different botnets families on real operational environments. The proposal relies on observing, u...