Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
Descripción del Articulo
        The dengue virus has become an increasingly critical problem for humanity due to its extensive spread. This is transmitted through a vector that sprouts in certain climatic conditions (tropical and subtropical climates). The transmission of the disease can be associated with certain climatic variabl...
              
            
    
                        | Autores: | , , , | 
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2023 | 
| Institución: | Universidad de Lima | 
| Repositorio: | ULIMA-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/19484 | 
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/19484 https://doi.org/10.13053/CyS-27-3-4383  | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Machine learning Forecasting Aprendizaje automático Dengue Prospectiva https://purl.org/pe-repo/ocde/ford#3.03.05  | 
| id | 
                  RULI_7408d0f8ed8f7573487feda335344d8d | 
    
|---|---|
| oai_identifier_str | 
                  oai:repositorio.ulima.edu.pe:20.500.12724/19484 | 
    
| network_acronym_str | 
                  RULI | 
    
| network_name_str | 
                  ULIMA-Institucional | 
    
| repository_id_str | 
                  3883 | 
    
| spelling | 
                  Sánchez López, Brenda Sofía ZoilaCandioti Nolberto, DanielaTaquía Gutiérrez, José AntonioGarcía López, Yván JesúsTaquía Gutiérrez, José AntonioGarcía López, Yván JesúsSánchez López, Brenda Sofía Zoila (Ingeniería Industrial)Candioti Nolberto, Daniela (Ingeniería Industrial)2023-12-13T17:08:15Z2023-12-13T17:08:15Z2023Sánchez López. B. S., Candioti Nolberto, D., Taquia Gutiérrez, J. A., & García López, Y. (2023). Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence. Computación y Sistemas, 27(3), pp. 769-777. https://doi.org/10.13053/CyS-27-3-43831405-5546https://hdl.handle.net/20.500.12724/19484Computación y Sistemas0000000121541816https://doi.org/10.13053/CyS-27-3-43832-s2.0-85176359852The dengue virus has become an increasingly critical problem for humanity due to its extensive spread. This is transmitted through a vector that sprouts in certain climatic conditions (tropical and subtropical climates). The transmission of the disease can be associated with certain climatic variables that reinforce the outbreak. Data were collected on dengue cases by epidemiological week registered in Loreto-Peru from January 1, 2016, to January 31, 2022. Likewise, data on meteorological variables (maximum and minimum temperature; dry and humid bulb temperature; wind speed and total precipitation in the area). In this study, four Machine learning modeling techniques were considered: Support Vector Machine (SVM), Decision Tree, Random Forest and AdaBoost; and the parameters defined to evaluate the models are: Accuracy, Precision, Recall and F-1. As a result, optimal AUC values were obtained in a range from 0.818 to 0.996 for the SVM, Random Forest and AdaBoost algorithms, likewise, in all weather stations the ROC curve showed good performance for all models, except for the Decision Tree algorithm. As a conclusion for this study the optimal model to associate dengue cases with climatic conditions is SVM.application/htmlengCentro de Investigación en Computación del Instituto Politécnico NacionalMXurn:issn: 1405-5546info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAMachine learningForecastingAprendizaje automáticoDengueProspectivahttps://purl.org/pe-repo/ocde/ford#3.03.05Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presenceinfo:eu-repo/semantics/articleArtículo en ScopusTaquía Gutiérrez, José Antonio (Ingeniería Industrial)García López, Yván Jesús (Ingeniería Industrial)Taquía Gutiérrez, José Antonio (Universidad de Lima, Instituto de Investigación Científica)García López, Yván Jesús (Universidad de Lima, Instituto de Investigación Científica)920.500.12724/19484oai:repositorio.ulima.edu.pe:20.500.12724/194842025-03-06 19:29:02.399Repositorio Universidad de Limarepositorio@ulima.edu.pe | 
    
| dc.title.en_EN.fl_str_mv | 
                  Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence | 
    
| title | 
                  Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence | 
    
| spellingShingle | 
                  Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence Sánchez López, Brenda Sofía Zoila Machine learning Forecasting Aprendizaje automático Dengue Prospectiva https://purl.org/pe-repo/ocde/ford#3.03.05  | 
    
| title_short | 
                  Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence | 
    
| title_full | 
                  Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence | 
    
| title_fullStr | 
                  Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence | 
    
| title_full_unstemmed | 
                  Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence | 
    
| title_sort | 
                  Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence | 
    
| author | 
                  Sánchez López, Brenda Sofía Zoila | 
    
| author_facet | 
                  Sánchez López, Brenda Sofía Zoila Candioti Nolberto, Daniela Taquía Gutiérrez, José Antonio García López, Yván Jesús  | 
    
| author_role | 
                  author | 
    
| author2 | 
                  Candioti Nolberto, Daniela Taquía Gutiérrez, José Antonio García López, Yván Jesús  | 
    
| author2_role | 
                  author author author  | 
    
| dc.contributor.other.none.fl_str_mv | 
                  Taquía Gutiérrez, José Antonio García López, Yván Jesús  | 
    
| dc.contributor.student.none.fl_str_mv | 
                  Sánchez López, Brenda Sofía Zoila (Ingeniería Industrial) Candioti Nolberto, Daniela (Ingeniería Industrial)  | 
    
| dc.contributor.author.fl_str_mv | 
                  Sánchez López, Brenda Sofía Zoila Candioti Nolberto, Daniela Taquía Gutiérrez, José Antonio García López, Yván Jesús  | 
    
| dc.subject.en_EN.fl_str_mv | 
                  Machine learning Forecasting  | 
    
| topic | 
                  Machine learning Forecasting Aprendizaje automático Dengue Prospectiva https://purl.org/pe-repo/ocde/ford#3.03.05  | 
    
| dc.subject.es_PE.fl_str_mv | 
                  Aprendizaje automático Dengue Prospectiva  | 
    
| dc.subject.ocde.none.fl_str_mv | 
                  https://purl.org/pe-repo/ocde/ford#3.03.05 | 
    
| description | 
                  The dengue virus has become an increasingly critical problem for humanity due to its extensive spread. This is transmitted through a vector that sprouts in certain climatic conditions (tropical and subtropical climates). The transmission of the disease can be associated with certain climatic variables that reinforce the outbreak. Data were collected on dengue cases by epidemiological week registered in Loreto-Peru from January 1, 2016, to January 31, 2022. Likewise, data on meteorological variables (maximum and minimum temperature; dry and humid bulb temperature; wind speed and total precipitation in the area). In this study, four Machine learning modeling techniques were considered: Support Vector Machine (SVM), Decision Tree, Random Forest and AdaBoost; and the parameters defined to evaluate the models are: Accuracy, Precision, Recall and F-1. As a result, optimal AUC values were obtained in a range from 0.818 to 0.996 for the SVM, Random Forest and AdaBoost algorithms, likewise, in all weather stations the ROC curve showed good performance for all models, except for the Decision Tree algorithm. As a conclusion for this study the optimal model to associate dengue cases with climatic conditions is SVM. | 
    
| publishDate | 
                  2023 | 
    
| dc.date.accessioned.none.fl_str_mv | 
                  2023-12-13T17:08:15Z | 
    
| dc.date.available.none.fl_str_mv | 
                  2023-12-13T17:08:15Z | 
    
| dc.date.issued.fl_str_mv | 
                  2023 | 
    
| dc.type.none.fl_str_mv | 
                  info:eu-repo/semantics/article | 
    
| dc.type.other.none.fl_str_mv | 
                  Artículo en Scopus | 
    
| format | 
                  article | 
    
| dc.identifier.citation.es_PE.fl_str_mv | 
                  Sánchez López. B. S., Candioti Nolberto, D., Taquia Gutiérrez, J. A., & García López, Y. (2023). Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence. Computación y Sistemas, 27(3), pp. 769-777. https://doi.org/10.13053/CyS-27-3-4383 | 
    
| dc.identifier.issn.none.fl_str_mv | 
                  1405-5546 | 
    
| dc.identifier.uri.none.fl_str_mv | 
                  https://hdl.handle.net/20.500.12724/19484 | 
    
| dc.identifier.journal.none.fl_str_mv | 
                  Computación y Sistemas | 
    
| dc.identifier.isni.none.fl_str_mv | 
                  0000000121541816 | 
    
| dc.identifier.doi.none.fl_str_mv | 
                  https://doi.org/10.13053/CyS-27-3-4383 | 
    
| dc.identifier.scopusid.none.fl_str_mv | 
                  2-s2.0-85176359852 | 
    
| identifier_str_mv | 
                  Sánchez López. B. S., Candioti Nolberto, D., Taquia Gutiérrez, J. A., & García López, Y. (2023). Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence. Computación y Sistemas, 27(3), pp. 769-777. https://doi.org/10.13053/CyS-27-3-4383 1405-5546 Computación y Sistemas 0000000121541816 2-s2.0-85176359852  | 
    
| url | 
                  https://hdl.handle.net/20.500.12724/19484 https://doi.org/10.13053/CyS-27-3-4383  | 
    
| dc.language.iso.none.fl_str_mv | 
                  eng | 
    
| language | 
                  eng | 
    
| dc.relation.ispartof.none.fl_str_mv | 
                  urn:issn: 1405-5546 | 
    
| dc.rights.*.fl_str_mv | 
                  info:eu-repo/semantics/openAccess | 
    
| dc.rights.uri.*.fl_str_mv | 
                  https://creativecommons.org/licenses/by-nc-sa/4.0/ | 
    
| eu_rights_str_mv | 
                  openAccess | 
    
| rights_invalid_str_mv | 
                  https://creativecommons.org/licenses/by-nc-sa/4.0/ | 
    
| dc.format.none.fl_str_mv | 
                  application/html | 
    
| dc.publisher.none.fl_str_mv | 
                  Centro de Investigación en Computación del Instituto Politécnico Nacional | 
    
| dc.publisher.country.none.fl_str_mv | 
                  MX | 
    
| publisher.none.fl_str_mv | 
                  Centro de Investigación en Computación del Instituto Politécnico Nacional | 
    
| dc.source.none.fl_str_mv | 
                  Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA  | 
    
| instname_str | 
                  Universidad de Lima | 
    
| instacron_str | 
                  ULIMA | 
    
| institution | 
                  ULIMA | 
    
| reponame_str | 
                  ULIMA-Institucional | 
    
| collection | 
                  ULIMA-Institucional | 
    
| repository.name.fl_str_mv | 
                  Repositorio Universidad de Lima | 
    
| repository.mail.fl_str_mv | 
                  repositorio@ulima.edu.pe | 
    
| _version_ | 
                  1847246036284735488 | 
    
| score | 
                  13.130007 | 
    
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).