Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence

Descripción del Articulo

The dengue virus has become an increasingly critical problem for humanity due to its extensive spread. This is transmitted through a vector that sprouts in certain climatic conditions (tropical and subtropical climates). The transmission of the disease can be associated with certain climatic variabl...

Descripción completa

Detalles Bibliográficos
Autores: Sánchez López, Brenda Sofía Zoila, Candioti Nolberto, Daniela, Taquía Gutiérrez, José Antonio, García López, Yván Jesús
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/19484
Enlace del recurso:https://hdl.handle.net/20.500.12724/19484
https://doi.org/10.13053/CyS-27-3-4383
Nivel de acceso:acceso abierto
Materia:Machine learning
Forecasting
Aprendizaje automático
Dengue
Prospectiva
https://purl.org/pe-repo/ocde/ford#3.03.05
id RULI_7408d0f8ed8f7573487feda335344d8d
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/19484
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
spelling Sánchez López, Brenda Sofía ZoilaCandioti Nolberto, DanielaTaquía Gutiérrez, José AntonioGarcía López, Yván JesúsTaquía Gutiérrez, José AntonioGarcía López, Yván JesúsSánchez López, Brenda Sofía Zoila (Ingeniería Industrial)Candioti Nolberto, Daniela (Ingeniería Industrial)2023-12-13T17:08:15Z2023-12-13T17:08:15Z2023Sánchez López. B. S., Candioti Nolberto, D., Taquia Gutiérrez, J. A., & García López, Y. (2023). Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence. Computación y Sistemas, 27(3), pp. 769-777. https://doi.org/10.13053/CyS-27-3-43831405-5546https://hdl.handle.net/20.500.12724/19484Computación y Sistemas0000000121541816https://doi.org/10.13053/CyS-27-3-43832-s2.0-85176359852The dengue virus has become an increasingly critical problem for humanity due to its extensive spread. This is transmitted through a vector that sprouts in certain climatic conditions (tropical and subtropical climates). The transmission of the disease can be associated with certain climatic variables that reinforce the outbreak. Data were collected on dengue cases by epidemiological week registered in Loreto-Peru from January 1, 2016, to January 31, 2022. Likewise, data on meteorological variables (maximum and minimum temperature; dry and humid bulb temperature; wind speed and total precipitation in the area). In this study, four Machine learning modeling techniques were considered: Support Vector Machine (SVM), Decision Tree, Random Forest and AdaBoost; and the parameters defined to evaluate the models are: Accuracy, Precision, Recall and F-1. As a result, optimal AUC values were obtained in a range from 0.818 to 0.996 for the SVM, Random Forest and AdaBoost algorithms, likewise, in all weather stations the ROC curve showed good performance for all models, except for the Decision Tree algorithm. As a conclusion for this study the optimal model to associate dengue cases with climatic conditions is SVM.application/htmlengCentro de Investigación en Computación del Instituto Politécnico NacionalMXurn:issn: 1405-5546info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAMachine learningForecastingAprendizaje automáticoDengueProspectivahttps://purl.org/pe-repo/ocde/ford#3.03.05Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presenceinfo:eu-repo/semantics/articleArtículo en ScopusTaquía Gutiérrez, José Antonio (Ingeniería Industrial)García López, Yván Jesús (Ingeniería Industrial)Taquía Gutiérrez, José Antonio (Universidad de Lima, Instituto de Investigación Científica)García López, Yván Jesús (Universidad de Lima, Instituto de Investigación Científica)920.500.12724/19484oai:repositorio.ulima.edu.pe:20.500.12724/194842025-03-06 19:29:02.399Repositorio Universidad de Limarepositorio@ulima.edu.pe
dc.title.en_EN.fl_str_mv Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
title Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
spellingShingle Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
Sánchez López, Brenda Sofía Zoila
Machine learning
Forecasting
Aprendizaje automático
Dengue
Prospectiva
https://purl.org/pe-repo/ocde/ford#3.03.05
title_short Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
title_full Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
title_fullStr Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
title_full_unstemmed Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
title_sort Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence
author Sánchez López, Brenda Sofía Zoila
author_facet Sánchez López, Brenda Sofía Zoila
Candioti Nolberto, Daniela
Taquía Gutiérrez, José Antonio
García López, Yván Jesús
author_role author
author2 Candioti Nolberto, Daniela
Taquía Gutiérrez, José Antonio
García López, Yván Jesús
author2_role author
author
author
dc.contributor.other.none.fl_str_mv Taquía Gutiérrez, José Antonio
García López, Yván Jesús
dc.contributor.student.none.fl_str_mv Sánchez López, Brenda Sofía Zoila (Ingeniería Industrial)
Candioti Nolberto, Daniela (Ingeniería Industrial)
dc.contributor.author.fl_str_mv Sánchez López, Brenda Sofía Zoila
Candioti Nolberto, Daniela
Taquía Gutiérrez, José Antonio
García López, Yván Jesús
dc.subject.en_EN.fl_str_mv Machine learning
Forecasting
topic Machine learning
Forecasting
Aprendizaje automático
Dengue
Prospectiva
https://purl.org/pe-repo/ocde/ford#3.03.05
dc.subject.es_PE.fl_str_mv Aprendizaje automático
Dengue
Prospectiva
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#3.03.05
description The dengue virus has become an increasingly critical problem for humanity due to its extensive spread. This is transmitted through a vector that sprouts in certain climatic conditions (tropical and subtropical climates). The transmission of the disease can be associated with certain climatic variables that reinforce the outbreak. Data were collected on dengue cases by epidemiological week registered in Loreto-Peru from January 1, 2016, to January 31, 2022. Likewise, data on meteorological variables (maximum and minimum temperature; dry and humid bulb temperature; wind speed and total precipitation in the area). In this study, four Machine learning modeling techniques were considered: Support Vector Machine (SVM), Decision Tree, Random Forest and AdaBoost; and the parameters defined to evaluate the models are: Accuracy, Precision, Recall and F-1. As a result, optimal AUC values were obtained in a range from 0.818 to 0.996 for the SVM, Random Forest and AdaBoost algorithms, likewise, in all weather stations the ROC curve showed good performance for all models, except for the Decision Tree algorithm. As a conclusion for this study the optimal model to associate dengue cases with climatic conditions is SVM.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-12-13T17:08:15Z
dc.date.available.none.fl_str_mv 2023-12-13T17:08:15Z
dc.date.issued.fl_str_mv 2023
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo en Scopus
format article
dc.identifier.citation.es_PE.fl_str_mv Sánchez López. B. S., Candioti Nolberto, D., Taquia Gutiérrez, J. A., & García López, Y. (2023). Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence. Computación y Sistemas, 27(3), pp. 769-777. https://doi.org/10.13053/CyS-27-3-4383
dc.identifier.issn.none.fl_str_mv 1405-5546
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/19484
dc.identifier.journal.none.fl_str_mv Computación y Sistemas
dc.identifier.isni.none.fl_str_mv 0000000121541816
dc.identifier.doi.none.fl_str_mv https://doi.org/10.13053/CyS-27-3-4383
dc.identifier.scopusid.none.fl_str_mv 2-s2.0-85176359852
identifier_str_mv Sánchez López. B. S., Candioti Nolberto, D., Taquia Gutiérrez, J. A., & García López, Y. (2023). Traditional Machine Learning based on Atmospheric Conditions for Prediction of Dengue Presence. Computación y Sistemas, 27(3), pp. 769-777. https://doi.org/10.13053/CyS-27-3-4383
1405-5546
Computación y Sistemas
0000000121541816
2-s2.0-85176359852
url https://hdl.handle.net/20.500.12724/19484
https://doi.org/10.13053/CyS-27-3-4383
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn: 1405-5546
dc.rights.*.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-sa/4.0/
dc.format.none.fl_str_mv application/html
dc.publisher.none.fl_str_mv Centro de Investigación en Computación del Instituto Politécnico Nacional
dc.publisher.country.none.fl_str_mv MX
publisher.none.fl_str_mv Centro de Investigación en Computación del Instituto Politécnico Nacional
dc.source.none.fl_str_mv Repositorio Institucional - Ulima
Universidad de Lima
reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1847246036284735488
score 13.130007
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).