Load balancing method for KDN-based data center using neural network
Descripción del Articulo
The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Art...
| Autores: | , |
|---|---|
| Formato: | objeto de conferencia |
| Fecha de Publicación: | 2019 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/8753 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/8753 |
| Nivel de acceso: | acceso abierto |
| Materia: | Redes neuronales (Informática) Procesamiento electrónico de datos Neural networks (Computer science) Electronic data processing Ingeniería de sistemas / Diseño y métodos http://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
RULI_46f7eb8fc47fd8b1c509725359c85a70 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/8753 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| dc.title.en.fl_str_mv |
Load balancing method for KDN-based data center using neural network |
| title |
Load balancing method for KDN-based data center using neural network |
| spellingShingle |
Load balancing method for KDN-based data center using neural network Ruelas, Alex Midwar Rodríguez Redes neuronales (Informática) Procesamiento electrónico de datos Neural networks (Computer science) Electronic data processing Ingeniería de sistemas / Diseño y métodos http://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Load balancing method for KDN-based data center using neural network |
| title_full |
Load balancing method for KDN-based data center using neural network |
| title_fullStr |
Load balancing method for KDN-based data center using neural network |
| title_full_unstemmed |
Load balancing method for KDN-based data center using neural network |
| title_sort |
Load balancing method for KDN-based data center using neural network |
| author |
Ruelas, Alex Midwar Rodríguez |
| author_facet |
Ruelas, Alex Midwar Rodríguez Rothenberg, Christian Esteve |
| author_role |
author |
| author2 |
Rothenberg, Christian Esteve |
| author2_role |
author |
| dc.contributor.author.fl_str_mv |
Ruelas, Alex Midwar Rodríguez Rothenberg, Christian Esteve |
| dc.subject.es_PE.fl_str_mv |
Redes neuronales (Informática) Procesamiento electrónico de datos |
| topic |
Redes neuronales (Informática) Procesamiento electrónico de datos Neural networks (Computer science) Electronic data processing Ingeniería de sistemas / Diseño y métodos http://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.en_EN.fl_str_mv |
Neural networks (Computer science) Electronic data processing |
| dc.subject.classification.es.fl_str_mv |
Ingeniería de sistemas / Diseño y métodos |
| dc.subject.ocde.es_PE.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved. |
| publishDate |
2019 |
| dc.date.accessioned.none.fl_str_mv |
2019-07-12T15:41:53Z |
| dc.date.available.none.fl_str_mv |
2019-07-12T15:41:53Z |
| dc.date.issued.fl_str_mv |
2019 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/conferenceObject |
| dc.type.other.es_PE.fl_str_mv |
Artículo de conferencia |
| format |
conferenceObject |
| dc.identifier.citation.es.fl_str_mv |
Ruelas, A. M. R. y Rothenberg, C. E.(2019). Load balancing method for KDN-based data center using neural network. En Universidad de Lima (Ed.), Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 87-97), Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial. |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/8753 |
| identifier_str_mv |
Ruelas, A. M. R. y Rothenberg, C. E.(2019). Load balancing method for KDN-based data center using neural network. En Universidad de Lima (Ed.), Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 87-97), Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial. |
| url |
https://hdl.handle.net/20.500.12724/8753 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad de Lima |
| dc.publisher.country.none.fl_str_mv |
PE |
| dc.source.es_PE.fl_str_mv |
Universidad de Lima Repositorio Institucional - Ulima |
| dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/4/ponencia_03_%20Ruelas.pdf.jpg https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/3/ponencia_03_%20Ruelas.pdf.txt https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/1/ponencia_03_%20Ruelas.pdf https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/2/license.txt |
| bitstream.checksum.fl_str_mv |
78cef3cef3e477c743dac33ed7210305 7885582b8c4016c34073033361012adf 6033e88064c5ffb62b31337fffa8c339 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1822513681919901696 |
| spelling |
Ruelas, Alex Midwar RodríguezRothenberg, Christian Esteve2019-07-12T15:41:53Z2019-07-12T15:41:53Z2019Ruelas, A. M. R. y Rothenberg, C. E.(2019). Load balancing method for KDN-based data center using neural network. En Universidad de Lima (Ed.), Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 87-97), Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial.https://hdl.handle.net/20.500.12724/8753The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.Revisado por paresapplication/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Universidad de LimaRepositorio Institucional - Ulimareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMARedes neuronales (Informática)Procesamiento electrónico de datosNeural networks (Computer science)Electronic data processingIngeniería de sistemas / Diseño y métodoshttp://purl.org/pe-repo/ocde/ford#2.02.04Load balancing method for KDN-based data center using neural networkinfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaTHUMBNAILponencia_03_ Ruelas.pdf.jpgponencia_03_ Ruelas.pdf.jpgGenerated Thumbnailimage/jpeg14911https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/4/ponencia_03_%20Ruelas.pdf.jpg78cef3cef3e477c743dac33ed7210305MD54TEXTponencia_03_ Ruelas.pdf.txtponencia_03_ Ruelas.pdf.txtExtracted texttext/plain23095https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/3/ponencia_03_%20Ruelas.pdf.txt7885582b8c4016c34073033361012adfMD53ORIGINALponencia_03_ Ruelas.pdfponencia_03_ Ruelas.pdfapplication/pdf907230https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/1/ponencia_03_%20Ruelas.pdf6033e88064c5ffb62b31337fffa8c339MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12724/8753oai:repositorio.ulima.edu.pe:20.500.12724/87532021-08-02 23:39:09.05Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.926661 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).