Load balancing method for KDN-based data center using neural network

Descripción del Articulo

The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Art...

Descripción completa

Detalles Bibliográficos
Autores: Ruelas, Alex Midwar Rodríguez, Rothenberg, Christian Esteve
Formato: objeto de conferencia
Fecha de Publicación:2019
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/8753
Enlace del recurso:https://hdl.handle.net/20.500.12724/8753
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Informática)
Procesamiento electrónico de datos
Neural networks (Computer science)
Electronic data processing
Ingeniería de sistemas / Diseño y métodos
http://purl.org/pe-repo/ocde/ford#2.02.04
id RULI_46f7eb8fc47fd8b1c509725359c85a70
oai_identifier_str oai:repositorio.ulima.edu.pe:20.500.12724/8753
network_acronym_str RULI
network_name_str ULIMA-Institucional
repository_id_str 3883
dc.title.en.fl_str_mv Load balancing method for KDN-based data center using neural network
title Load balancing method for KDN-based data center using neural network
spellingShingle Load balancing method for KDN-based data center using neural network
Ruelas, Alex Midwar Rodríguez
Redes neuronales (Informática)
Procesamiento electrónico de datos
Neural networks (Computer science)
Electronic data processing
Ingeniería de sistemas / Diseño y métodos
http://purl.org/pe-repo/ocde/ford#2.02.04
title_short Load balancing method for KDN-based data center using neural network
title_full Load balancing method for KDN-based data center using neural network
title_fullStr Load balancing method for KDN-based data center using neural network
title_full_unstemmed Load balancing method for KDN-based data center using neural network
title_sort Load balancing method for KDN-based data center using neural network
author Ruelas, Alex Midwar Rodríguez
author_facet Ruelas, Alex Midwar Rodríguez
Rothenberg, Christian Esteve
author_role author
author2 Rothenberg, Christian Esteve
author2_role author
dc.contributor.author.fl_str_mv Ruelas, Alex Midwar Rodríguez
Rothenberg, Christian Esteve
dc.subject.es_PE.fl_str_mv Redes neuronales (Informática)
Procesamiento electrónico de datos
topic Redes neuronales (Informática)
Procesamiento electrónico de datos
Neural networks (Computer science)
Electronic data processing
Ingeniería de sistemas / Diseño y métodos
http://purl.org/pe-repo/ocde/ford#2.02.04
dc.subject.en_EN.fl_str_mv Neural networks (Computer science)
Electronic data processing
dc.subject.classification.es.fl_str_mv Ingeniería de sistemas / Diseño y métodos
dc.subject.ocde.es_PE.fl_str_mv http://purl.org/pe-repo/ocde/ford#2.02.04
description The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.
publishDate 2019
dc.date.accessioned.none.fl_str_mv 2019-07-12T15:41:53Z
dc.date.available.none.fl_str_mv 2019-07-12T15:41:53Z
dc.date.issued.fl_str_mv 2019
dc.type.es_PE.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.other.es_PE.fl_str_mv Artículo de conferencia
format conferenceObject
dc.identifier.citation.es.fl_str_mv Ruelas, A. M. R. y Rothenberg, C. E.(2019). Load balancing method for KDN-based data center using neural network. En Universidad de Lima (Ed.), Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 87-97), Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12724/8753
identifier_str_mv Ruelas, A. M. R. y Rothenberg, C. E.(2019). Load balancing method for KDN-based data center using neural network. En Universidad de Lima (Ed.), Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 87-97), Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial.
url https://hdl.handle.net/20.500.12724/8753
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_PE.fl_str_mv Universidad de Lima
dc.publisher.country.none.fl_str_mv PE
dc.source.es_PE.fl_str_mv Universidad de Lima
Repositorio Institucional - Ulima
dc.source.none.fl_str_mv reponame:ULIMA-Institucional
instname:Universidad de Lima
instacron:ULIMA
instname_str Universidad de Lima
instacron_str ULIMA
institution ULIMA
reponame_str ULIMA-Institucional
collection ULIMA-Institucional
bitstream.url.fl_str_mv https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/4/ponencia_03_%20Ruelas.pdf.jpg
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/3/ponencia_03_%20Ruelas.pdf.txt
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/1/ponencia_03_%20Ruelas.pdf
https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/2/license.txt
bitstream.checksum.fl_str_mv 78cef3cef3e477c743dac33ed7210305
7885582b8c4016c34073033361012adf
6033e88064c5ffb62b31337fffa8c339
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Universidad de Lima
repository.mail.fl_str_mv repositorio@ulima.edu.pe
_version_ 1822513681919901696
spelling Ruelas, Alex Midwar RodríguezRothenberg, Christian Esteve2019-07-12T15:41:53Z2019-07-12T15:41:53Z2019Ruelas, A. M. R. y Rothenberg, C. E.(2019). Load balancing method for KDN-based data center using neural network. En Universidad de Lima (Ed.), Hacia la transformación digital. Actas del I Congreso Internacional de Ingeniería de Sistemas (pp. 87-97), Lima, 13 y 14 de septiembre del 2018. Universidad de Lima, Fondo Editorial.https://hdl.handle.net/20.500.12724/8753The growth of cloud application services delivered through data centers with varying traffic demands unveils limitations of traditional load balancing methods. Aiming to attend evolving scenarios and improve the overall network performance, this paper proposes a load balancing method based on an Artificial Neural Network (ANN) in the context of Knowledge-Defined Networking (KDN). KDN seeks to leverage Artificial Intelligence (AI) techniques for the control and operation of computer networks. KDN extends Software-Defined Networking (SDN) with advanced telemetry and network analytics introducing a so-called Knowledge Plane. The ANN is capable of predicting the network performance according to traffic parameters paths. The method includes training the ANN model to choose the path with least load. The experimental results show that the performance of the KDN-based data center has been greatly improved.Revisado por paresapplication/pdfengUniversidad de LimaPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-nd/4.0/Universidad de LimaRepositorio Institucional - Ulimareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMARedes neuronales (Informática)Procesamiento electrónico de datosNeural networks (Computer science)Electronic data processingIngeniería de sistemas / Diseño y métodoshttp://purl.org/pe-repo/ocde/ford#2.02.04Load balancing method for KDN-based data center using neural networkinfo:eu-repo/semantics/conferenceObjectArtículo de conferenciaTHUMBNAILponencia_03_ Ruelas.pdf.jpgponencia_03_ Ruelas.pdf.jpgGenerated Thumbnailimage/jpeg14911https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/4/ponencia_03_%20Ruelas.pdf.jpg78cef3cef3e477c743dac33ed7210305MD54TEXTponencia_03_ Ruelas.pdf.txtponencia_03_ Ruelas.pdf.txtExtracted texttext/plain23095https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/3/ponencia_03_%20Ruelas.pdf.txt7885582b8c4016c34073033361012adfMD53ORIGINALponencia_03_ Ruelas.pdfponencia_03_ Ruelas.pdfapplication/pdf907230https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/1/ponencia_03_%20Ruelas.pdf6033e88064c5ffb62b31337fffa8c339MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ulima.edu.pe/bitstream/20.500.12724/8753/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5220.500.12724/8753oai:repositorio.ulima.edu.pe:20.500.12724/87532021-08-02 23:39:09.05Repositorio Universidad de Limarepositorio@ulima.edu.peTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
score 13.926661
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).