Automatic system for wine qualification through Neural Networks

Descripción del Articulo

Treatment of data for the qualification of wines, this report details the process followed, where the Python programming language was used, for the analysis of the data of the dataset, the Google Colab server was used to execute the algorithms in the cloud since the team considered that the speed of...

Descripción completa

Detalles Bibliográficos
Autores: Rivera Demanuel, Diego Richard, Huamani Huancara, Cleofe, Charca Ccama, Yimy Alfredo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/51
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/51
https://doi.org/10.48168/innosoft.s8.a51
https://purl.org/42411/s8/a51
https://n2t.net/ark:/42411/s8/a51
Nivel de acceso:acceso abierto
Materia:Neural networks
Data processing
Big data
Redes neuronales
Tratamiento de datos
Datos masivos
Descripción
Sumario:Treatment of data for the qualification of wines, this report details the process followed, where the Python programming language was used, for the analysis of the data of the dataset, the Google Colab server was used to execute the algorithms in the cloud since the team considered that the speed of data analysis in Google Collab is faster. Neural networks have the ability to learn and perform tasks based on an initial training called adaptive learning and are also fault-tolerant.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).