Automatic system for wine qualification through Neural Networks

Descripción del Articulo

Treatment of data for the qualification of wines, this report details the process followed, where the Python programming language was used, for the analysis of the data of the dataset, the Google Colab server was used to execute the algorithms in the cloud since the team considered that the speed of...

Descripción completa

Detalles Bibliográficos
Autores: Rivera Demanuel, Diego Richard, Huamani Huancara, Cleofe, Charca Ccama, Yimy Alfredo
Formato: artículo
Fecha de Publicación:2022
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/51
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/51
https://doi.org/10.48168/innosoft.s8.a51
https://purl.org/42411/s8/a51
https://n2t.net/ark:/42411/s8/a51
Nivel de acceso:acceso abierto
Materia:Neural networks
Data processing
Big data
Redes neuronales
Tratamiento de datos
Datos masivos
id REVUSALLE_1b51a007a8e58ce209b2e279d52a55a7
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/51
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Automatic system for wine qualification through Neural NetworksSistema automático para calificación de vino mediante Redes NeuronalesRivera Demanuel, Diego RichardHuamani Huancara, CleofeCharca Ccama, Yimy AlfredoNeural networksData processingBig dataRedes neuronalesTratamiento de datosDatos masivosTreatment of data for the qualification of wines, this report details the process followed, where the Python programming language was used, for the analysis of the data of the dataset, the Google Colab server was used to execute the algorithms in the cloud since the team considered that the speed of data analysis in Google Collab is faster. Neural networks have the ability to learn and perform tasks based on an initial training called adaptive learning and are also fault-tolerant.Tratamiento de datos para la calificación de vinos, este informe detalla el proceso seguido, en donde se utilizó el lenguaje de programación Phyton, para el análisis de los datos del dataset, se utilizó el servidor Google Colab para ejecutar los algoritmos en la nube ya que el equipo considero que la velocidad de análisis de datos en google colab es más rápido. Las redes neuronales tienen capacidad de aprender y realizar tareas basadas en un entrenamiento inicial llamado aprendizaje adaptativo y además de que son tolerantes a los fallos.Universidad La Salle2022-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/51https://doi.org/10.48168/innosoft.s8.a51https://purl.org/42411/s8/a51https://n2t.net/ark:/42411/s8/a51Innovation and Software; Vol 3 No 1 (2022): March - August; 30-46Innovación y Software; Vol. 3 Núm. 1 (2022): Marzo - Agosto; 30-462708-09352708-0927https://doi.org/10.48168/innosoft.s8https://purl.org/42411/s8https://n2t.net/ark:/42411/s8reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/51/55https://revistas.ulasalle.edu.pe/innosoft/article/view/51/5620222022Derechos de autor 2022 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/512023-05-24T20:31:36Z
dc.title.none.fl_str_mv Automatic system for wine qualification through Neural Networks
Sistema automático para calificación de vino mediante Redes Neuronales
title Automatic system for wine qualification through Neural Networks
spellingShingle Automatic system for wine qualification through Neural Networks
Rivera Demanuel, Diego Richard
Neural networks
Data processing
Big data
Redes neuronales
Tratamiento de datos
Datos masivos
title_short Automatic system for wine qualification through Neural Networks
title_full Automatic system for wine qualification through Neural Networks
title_fullStr Automatic system for wine qualification through Neural Networks
title_full_unstemmed Automatic system for wine qualification through Neural Networks
title_sort Automatic system for wine qualification through Neural Networks
dc.creator.none.fl_str_mv Rivera Demanuel, Diego Richard
Huamani Huancara, Cleofe
Charca Ccama, Yimy Alfredo
author Rivera Demanuel, Diego Richard
author_facet Rivera Demanuel, Diego Richard
Huamani Huancara, Cleofe
Charca Ccama, Yimy Alfredo
author_role author
author2 Huamani Huancara, Cleofe
Charca Ccama, Yimy Alfredo
author2_role author
author
dc.subject.none.fl_str_mv Neural networks
Data processing
Big data
Redes neuronales
Tratamiento de datos
Datos masivos
topic Neural networks
Data processing
Big data
Redes neuronales
Tratamiento de datos
Datos masivos
description Treatment of data for the qualification of wines, this report details the process followed, where the Python programming language was used, for the analysis of the data of the dataset, the Google Colab server was used to execute the algorithms in the cloud since the team considered that the speed of data analysis in Google Collab is faster. Neural networks have the ability to learn and perform tasks based on an initial training called adaptive learning and are also fault-tolerant.
publishDate 2022
dc.date.none.fl_str_mv 2022-03-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/51
https://doi.org/10.48168/innosoft.s8.a51
https://purl.org/42411/s8/a51
https://n2t.net/ark:/42411/s8/a51
url https://revistas.ulasalle.edu.pe/innosoft/article/view/51
https://doi.org/10.48168/innosoft.s8.a51
https://purl.org/42411/s8/a51
https://n2t.net/ark:/42411/s8/a51
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/51/55
https://revistas.ulasalle.edu.pe/innosoft/article/view/51/56
dc.rights.none.fl_str_mv Derechos de autor 2022 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2022 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2022
2022
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 3 No 1 (2022): March - August; 30-46
Innovación y Software; Vol. 3 Núm. 1 (2022): Marzo - Agosto; 30-46
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s8
https://purl.org/42411/s8
https://n2t.net/ark:/42411/s8
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1842089923380772864
score 12.84232
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).