Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss
Descripción del Articulo
An accurate land-cover segmentation of very-high-resolution aerial images is essential for a wide range of applications, including urban planning and natural resource management. However, the automation of this process remains a challenge owing to the complexity of images, variability in land surfac...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/23211 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/23211 https://doi.org/10.1109/ACCESS.2025.3556632 |
| Nivel de acceso: | acceso abierto |
| Materia: | Pendiente |
| id |
RULI_46ce2802f35336568d1e778f826f9693 |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/23211 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| spelling |
Chicchon, MiguelLeón Trujillo, Francisco JamesSipiran, IvánMadrid Argomedo, Manuel RicardoMadrid Argomedo, Manuel Ricardo2025-09-09T21:26:37Z2025-09-09T21:26:37Z20252169-3536https://hdl.handle.net/20.500.12724/23211IEEE Access121541816https://doi.org/10.1109/ACCESS.2025.35566322-s2.0-105002585792An accurate land-cover segmentation of very-high-resolution aerial images is essential for a wide range of applications, including urban planning and natural resource management. However, the automation of this process remains a challenge owing to the complexity of images, variability in land surface features, and noise. In this study, a method for training convolutional neural networks and transformers to perform land-cover segmentation on very-high-resolution aerial images in a regional context was proposed. We assessed the U-Net-scSE, FT-U-NetFormer, and DC-Swin architectures, incorporating transfer learning and active contour loss functions to improve performance on semantic segmentation tasks. Our experiments conducted using the OpenEarthMap dataset, which includes images from 44 countries, demonstrate the superior performance of U-Net-scSE models with the EfficientNet-V2-XL and MiT-B4 encoders, achieving an mIoU of over 0.80 on a test dataset of urban and rural images from Peru.htmlengInstitute of Electrical and Electronics Engineers Inc.USurn:issn: 2169-3536info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/PendientePendienteLand-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Lossinfo:eu-repo/semantics/articleArtículo (Scopus)reponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMA20.500.12724/23211oai:repositorio.ulima.edu.pe:20.500.12724/232112025-09-16 10:47:23.627Repositorio Universidad de Limarepositorio@ulima.edu.pe |
| dc.title.none.fl_str_mv |
Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss |
| title |
Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss |
| spellingShingle |
Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss Chicchon, Miguel Pendiente Pendiente |
| title_short |
Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss |
| title_full |
Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss |
| title_fullStr |
Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss |
| title_full_unstemmed |
Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss |
| title_sort |
Land-Cover Semantic Segmentation for Very-High-Resolution Remote Sensing Imagery Using Deep Transfer Learning and Active Contour Loss |
| author |
Chicchon, Miguel |
| author_facet |
Chicchon, Miguel León Trujillo, Francisco James Sipiran, Iván Madrid Argomedo, Manuel Ricardo |
| author_role |
author |
| author2 |
León Trujillo, Francisco James Sipiran, Iván Madrid Argomedo, Manuel Ricardo |
| author2_role |
author author author |
| dc.contributor.other.none.fl_str_mv |
Madrid Argomedo, Manuel Ricardo |
| dc.contributor.author.fl_str_mv |
Chicchon, Miguel León Trujillo, Francisco James Sipiran, Iván Madrid Argomedo, Manuel Ricardo |
| dc.subject.none.fl_str_mv |
Pendiente |
| topic |
Pendiente Pendiente |
| dc.subject.ocde.none.fl_str_mv |
Pendiente |
| description |
An accurate land-cover segmentation of very-high-resolution aerial images is essential for a wide range of applications, including urban planning and natural resource management. However, the automation of this process remains a challenge owing to the complexity of images, variability in land surface features, and noise. In this study, a method for training convolutional neural networks and transformers to perform land-cover segmentation on very-high-resolution aerial images in a regional context was proposed. We assessed the U-Net-scSE, FT-U-NetFormer, and DC-Swin architectures, incorporating transfer learning and active contour loss functions to improve performance on semantic segmentation tasks. Our experiments conducted using the OpenEarthMap dataset, which includes images from 44 countries, demonstrate the superior performance of U-Net-scSE models with the EfficientNet-V2-XL and MiT-B4 encoders, achieving an mIoU of over 0.80 on a test dataset of urban and rural images from Peru. |
| publishDate |
2025 |
| dc.date.accessioned.none.fl_str_mv |
2025-09-09T21:26:37Z |
| dc.date.available.none.fl_str_mv |
2025-09-09T21:26:37Z |
| dc.date.issued.fl_str_mv |
2025 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo (Scopus) |
| format |
article |
| dc.identifier.issn.none.fl_str_mv |
2169-3536 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/23211 |
| dc.identifier.journal.none.fl_str_mv |
IEEE Access |
| dc.identifier.isni.none.fl_str_mv |
121541816 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.1109/ACCESS.2025.3556632 |
| dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-105002585792 |
| identifier_str_mv |
2169-3536 IEEE Access 121541816 2-s2.0-105002585792 |
| url |
https://hdl.handle.net/20.500.12724/23211 https://doi.org/10.1109/ACCESS.2025.3556632 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn: 2169-3536 |
| dc.rights.none.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.none.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/ |
| dc.format.none.fl_str_mv |
html |
| dc.publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.publisher.country.none.fl_str_mv |
US |
| publisher.none.fl_str_mv |
Institute of Electrical and Electronics Engineers Inc. |
| dc.source.none.fl_str_mv |
reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1846612271129690112 |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).