Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts
Descripción del Articulo
Crime continues to be an issue, in Metropolitan Lima, Peru affecting society. Our focus is on property crimes. We recognized the lack of studies on predicting these crimes. To tackle this problem, we used regression techniques such as XGBoost, Extra Tree, Support Vector, Bagging, Random Forest and A...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2024 |
| Institución: | Universidad de Lima |
| Repositorio: | ULIMA-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.ulima.edu.pe:20.500.12724/20201 |
| Enlace del recurso: | https://hdl.handle.net/20.500.12724/20201 https://doi.org/10.14569/IJACSA.2024.0150307 |
| Nivel de acceso: | acceso abierto |
| Materia: | Pendiente |
| id |
RULI_37e3242b37f300c2ee5d5c588ed0c75e |
|---|---|
| oai_identifier_str |
oai:repositorio.ulima.edu.pe:20.500.12724/20201 |
| network_acronym_str |
RULI |
| network_name_str |
ULIMA-Institucional |
| repository_id_str |
3883 |
| spelling |
Escobedo Neyra, María CieloTapia Aquino, Cynthia, LizetGutiérrez Cárdenas, Juan ManuelAyma, VíctorGutiérrez Cárdenas, Juan ManuelEscobedo Neyra, María Cielo (Ingeniería de Sistemas)Tapia Aquino, Cynthia, Lizet (Ingeniería de Sistemas)2024-04-19T13:54:31Z2024-04-19T13:54:31Z2024Escobedo, M., Tapia, C., Gutierrez, J., & Ayma, V. (2024). Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2024.0150307.2156-5570https://hdl.handle.net/20.500.12724/20201International Journal of Advanced Computer Science and Applications0000000121541816https://doi.org/10.14569/IJACSA.2024.01503072-s2.0-85189935904Crime continues to be an issue, in Metropolitan Lima, Peru affecting society. Our focus is on property crimes. We recognized the lack of studies on predicting these crimes. To tackle this problem, we used regression techniques such as XGBoost, Extra Tree, Support Vector, Bagging, Random Forest and AdaBoost. Through GridsearchCV we optimized hyperparameters to enhance our research findings. The results showed that Extra Tree Regression stood out as the model with an R2 value of 0.79. Additionally, error metrics like MSE (185.43) RMSE (13.62) and MAE (10.47) were considered to evaluate the model's performance. Our approach considers time patterns in crime incidents. Contributes, to addressing the issue of insecurity in a meaningful way.application/htmlengScience and Information OrganizationGBurn:issn:2156-5570info:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by-nc-sa/4.0/Repositorio Institucional - UlimaUniversidad de Limareponame:ULIMA-Institucionalinstname:Universidad de Limainstacron:ULIMAPendienteComparing Regression Models to Predict Property Crime in High-Risk Lima Districtsinfo:eu-repo/semantics/articleArtículo en ScopusIngeniería de SistemasProfessor Member, Universidad de LimaOI20.500.12724/20201oai:repositorio.ulima.edu.pe:20.500.12724/202012024-11-08 16:16:04.995Repositorio Universidad de Limarepositorio@ulima.edu.pe |
| dc.title.en_EN.fl_str_mv |
Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts |
| title |
Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts |
| spellingShingle |
Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts Escobedo Neyra, María Cielo Pendiente |
| title_short |
Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts |
| title_full |
Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts |
| title_fullStr |
Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts |
| title_full_unstemmed |
Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts |
| title_sort |
Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts |
| author |
Escobedo Neyra, María Cielo |
| author_facet |
Escobedo Neyra, María Cielo Tapia Aquino, Cynthia, Lizet Gutiérrez Cárdenas, Juan Manuel Ayma, Víctor |
| author_role |
author |
| author2 |
Tapia Aquino, Cynthia, Lizet Gutiérrez Cárdenas, Juan Manuel Ayma, Víctor |
| author2_role |
author author author |
| dc.contributor.other.none.fl_str_mv |
Gutiérrez Cárdenas, Juan Manuel |
| dc.contributor.student.none.fl_str_mv |
Escobedo Neyra, María Cielo (Ingeniería de Sistemas) Tapia Aquino, Cynthia, Lizet (Ingeniería de Sistemas) |
| dc.contributor.author.fl_str_mv |
Escobedo Neyra, María Cielo Tapia Aquino, Cynthia, Lizet Gutiérrez Cárdenas, Juan Manuel Ayma, Víctor |
| dc.subject.es_PE.fl_str_mv |
Pendiente |
| topic |
Pendiente |
| description |
Crime continues to be an issue, in Metropolitan Lima, Peru affecting society. Our focus is on property crimes. We recognized the lack of studies on predicting these crimes. To tackle this problem, we used regression techniques such as XGBoost, Extra Tree, Support Vector, Bagging, Random Forest and AdaBoost. Through GridsearchCV we optimized hyperparameters to enhance our research findings. The results showed that Extra Tree Regression stood out as the model with an R2 value of 0.79. Additionally, error metrics like MSE (185.43) RMSE (13.62) and MAE (10.47) were considered to evaluate the model's performance. Our approach considers time patterns in crime incidents. Contributes, to addressing the issue of insecurity in a meaningful way. |
| publishDate |
2024 |
| dc.date.accessioned.none.fl_str_mv |
2024-04-19T13:54:31Z |
| dc.date.available.none.fl_str_mv |
2024-04-19T13:54:31Z |
| dc.date.issued.fl_str_mv |
2024 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo en Scopus |
| format |
article |
| dc.identifier.citation.es_PE.fl_str_mv |
Escobedo, M., Tapia, C., Gutierrez, J., & Ayma, V. (2024). Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2024.0150307. |
| dc.identifier.issn.none.fl_str_mv |
2156-5570 |
| dc.identifier.uri.none.fl_str_mv |
https://hdl.handle.net/20.500.12724/20201 |
| dc.identifier.journal.none.fl_str_mv |
International Journal of Advanced Computer Science and Applications |
| dc.identifier.isni.none.fl_str_mv |
0000000121541816 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.14569/IJACSA.2024.0150307 |
| dc.identifier.scopusid.none.fl_str_mv |
2-s2.0-85189935904 |
| identifier_str_mv |
Escobedo, M., Tapia, C., Gutierrez, J., & Ayma, V. (2024). Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts. International Journal of Advanced Computer Science and Applications. https://doi.org/10.14569/IJACSA.2024.0150307. 2156-5570 International Journal of Advanced Computer Science and Applications 0000000121541816 2-s2.0-85189935904 |
| url |
https://hdl.handle.net/20.500.12724/20201 https://doi.org/10.14569/IJACSA.2024.0150307 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2156-5570 |
| dc.rights.*.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by-nc-sa/4.0/ |
| dc.format.none.fl_str_mv |
application/html |
| dc.publisher.none.fl_str_mv |
Science and Information Organization |
| dc.publisher.country.none.fl_str_mv |
GB |
| publisher.none.fl_str_mv |
Science and Information Organization |
| dc.source.none.fl_str_mv |
Repositorio Institucional - Ulima Universidad de Lima reponame:ULIMA-Institucional instname:Universidad de Lima instacron:ULIMA |
| instname_str |
Universidad de Lima |
| instacron_str |
ULIMA |
| institution |
ULIMA |
| reponame_str |
ULIMA-Institucional |
| collection |
ULIMA-Institucional |
| repository.name.fl_str_mv |
Repositorio Universidad de Lima |
| repository.mail.fl_str_mv |
repositorio@ulima.edu.pe |
| _version_ |
1847246731935219712 |
| score |
13.1083765 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).