Comparing Regression Models to Predict Property Crime in High-Risk Lima Districts

Descripción del Articulo

Crime continues to be an issue, in Metropolitan Lima, Peru affecting society. Our focus is on property crimes. We recognized the lack of studies on predicting these crimes. To tackle this problem, we used regression techniques such as XGBoost, Extra Tree, Support Vector, Bagging, Random Forest and A...

Descripción completa

Detalles Bibliográficos
Autores: Escobedo Neyra, María Cielo, Tapia Aquino, Cynthia, Lizet, Gutiérrez Cárdenas, Juan Manuel, Ayma, Víctor
Formato: artículo
Fecha de Publicación:2024
Institución:Universidad de Lima
Repositorio:ULIMA-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.ulima.edu.pe:20.500.12724/20201
Enlace del recurso:https://hdl.handle.net/20.500.12724/20201
https://doi.org/10.14569/IJACSA.2024.0150307
Nivel de acceso:acceso abierto
Materia:Pendiente
Descripción
Sumario:Crime continues to be an issue, in Metropolitan Lima, Peru affecting society. Our focus is on property crimes. We recognized the lack of studies on predicting these crimes. To tackle this problem, we used regression techniques such as XGBoost, Extra Tree, Support Vector, Bagging, Random Forest and AdaBoost. Through GridsearchCV we optimized hyperparameters to enhance our research findings. The results showed that Extra Tree Regression stood out as the model with an R2 value of 0.79. Additionally, error metrics like MSE (185.43) RMSE (13.62) and MAE (10.47) were considered to evaluate the model's performance. Our approach considers time patterns in crime incidents. Contributes, to addressing the issue of insecurity in a meaningful way.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).