Superconvergencia del gradiente para elementos finitos rectangulares

Descripción del Articulo

En el presente trabajo, primeramente consideramos el Problema de Dirichlet para un operador elíptico bidimensional de segundo orden, luego describimos el espacio de elementos finitos sobre el cual trabajaremos y consideramos fórmulas de cuadratura las cuales son exactas sobre polinomios de grado cua...

Descripción completa

Detalles Bibliográficos
Autor: Benazic, Renato
Formato: artículo
Fecha de Publicación:2001
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/95574
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8166/8461
Nivel de acceso:acceso abierto
Materia:Método de Elementos Finitos
Matemáticas
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:En el presente trabajo, primeramente consideramos el Problema de Dirichlet para un operador elíptico bidimensional de segundo orden, luego describimos el espacio de elementos finitos sobre el cual trabajaremos y consideramos fórmulas de cuadratura las cuales son exactas sobre polinomios de grado cuatro en cada variable. En la sección 4 enunciamos y demostramos algunos lemas que sirven para establecer la superconvergencia del Gradiente la cual se da en la sección 5. En las secciones 6 y 7, aplicamos los resultados de superconvergencia a problemas de tipo parabólico e hiperbólico, respectivamente, usando normas y seminormas apropiadas.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).