Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading

Descripción del Articulo

Existing computational pathology approaches did not allow, yet, the emergence of effective/efficient computer-aided tools used as a second opinion for pathologists in the daily practice. Focusing on the case of computer-based qualification for breast cancer diagnosis, the present article proposes tw...

Descripción completa

Detalles Bibliográficos
Autor: Jiménez Garay, Gabriel Alexandro
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146520
Enlace del recurso:http://hdl.handle.net/20.500.12404/13969
Nivel de acceso:acceso abierto
Materia:Mamas--Cáncer--Diagnóstico
Cáncer--Diagnóstico por imágenes
Histología
https://purl.org/pe-repo/ocde/ford#2.02.05
id RPUC_c87f13fd8579dd4441c54aa2a3a872ca
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146520
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Racoceanu, DanielJiménez Garay, Gabriel Alexandro2019-04-12T17:41:44Z2019-04-12T17:41:44Z20192019-04-12http://hdl.handle.net/20.500.12404/13969Existing computational pathology approaches did not allow, yet, the emergence of effective/efficient computer-aided tools used as a second opinion for pathologists in the daily practice. Focusing on the case of computer-based qualification for breast cancer diagnosis, the present article proposes two deep learning architectures to efficiently and effectively detect and classify mitosis in a histopathological tissue sample. The first method consisted of two parts, entailing a preprocessing of the digital histological image and a free-handcrafted-feature Convolutional Neural Network (CNN) used for binary classification. Results show that the methodology proposed can achieve 95% accuracy in testing with an F1-score of 94.35%, which is higher than the results from the literature using classical image processing techniques and also higher than the approaches using handcrafted features combined with CNNs. The second approach was an end-to-end methodology using semantic segmentation. Results showed that this algorithm can achieve an accuracy higher than 95% in testing and an average Dice index of 0.6 which is higher than the results from the literature using CNNs (0.9 F1-score). Additionally, due to the semantic properties of the deep learning approach, an end-to-end deep learning framework is viable to perform both tasks: detection and classification of mitosis. The results showed the potential of deep learning in the analysis of Whole Slide Images (WSI) and its integration to computer-aided systems. The extension of this work to whole slide images is also addressed in the last two chapters; as well as, some computational key points that are useful when constructing a computer-aided-system inspired by the described technology.Trabajo de investigaciónengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Mamas--Cáncer--DiagnósticoCáncer--Diagnóstico por imágenesHistologíahttps://purl.org/pe-repo/ocde/ford#2.02.05Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer gradinginfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales613077https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#trabajoDeInvestigacion20.500.14657/146520oai:repositorio.pucp.edu.pe:20.500.14657/1465202024-06-10 10:55:04.898http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
title Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
spellingShingle Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
Jiménez Garay, Gabriel Alexandro
Mamas--Cáncer--Diagnóstico
Cáncer--Diagnóstico por imágenes
Histología
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
title_full Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
title_fullStr Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
title_full_unstemmed Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
title_sort Deep Learning for Semantic Segmentation versus Classification in Computational Pathology: Application to mitosis analysis in Breast Cancer grading
author Jiménez Garay, Gabriel Alexandro
author_facet Jiménez Garay, Gabriel Alexandro
author_role author
dc.contributor.advisor.fl_str_mv Racoceanu, Daniel
dc.contributor.author.fl_str_mv Jiménez Garay, Gabriel Alexandro
dc.subject.es_ES.fl_str_mv Mamas--Cáncer--Diagnóstico
Cáncer--Diagnóstico por imágenes
Histología
topic Mamas--Cáncer--Diagnóstico
Cáncer--Diagnóstico por imágenes
Histología
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description Existing computational pathology approaches did not allow, yet, the emergence of effective/efficient computer-aided tools used as a second opinion for pathologists in the daily practice. Focusing on the case of computer-based qualification for breast cancer diagnosis, the present article proposes two deep learning architectures to efficiently and effectively detect and classify mitosis in a histopathological tissue sample. The first method consisted of two parts, entailing a preprocessing of the digital histological image and a free-handcrafted-feature Convolutional Neural Network (CNN) used for binary classification. Results show that the methodology proposed can achieve 95% accuracy in testing with an F1-score of 94.35%, which is higher than the results from the literature using classical image processing techniques and also higher than the approaches using handcrafted features combined with CNNs. The second approach was an end-to-end methodology using semantic segmentation. Results showed that this algorithm can achieve an accuracy higher than 95% in testing and an average Dice index of 0.6 which is higher than the results from the literature using CNNs (0.9 F1-score). Additionally, due to the semantic properties of the deep learning approach, an end-to-end deep learning framework is viable to perform both tasks: detection and classification of mitosis. The results showed the potential of deep learning in the analysis of Whole Slide Images (WSI) and its integration to computer-aided systems. The extension of this work to whole slide images is also addressed in the last two chapters; as well as, some computational key points that are useful when constructing a computer-aided-system inspired by the described technology.
publishDate 2019
dc.date.accessioned.es_ES.fl_str_mv 2019-04-12T17:41:44Z
dc.date.available.es_ES.fl_str_mv 2019-04-12T17:41:44Z
dc.date.created.es_ES.fl_str_mv 2019
dc.date.issued.fl_str_mv 2019-04-12
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/13969
url http://hdl.handle.net/20.500.12404/13969
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638550214737920
score 13.924177
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).