Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus

Descripción del Articulo

People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automa...

Descripción completa

Detalles Bibliográficos
Autor: Huiza Pereyra, Eric Raphael
Formato: tesis de maestría
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/172359
Enlace del recurso:http://hdl.handle.net/20.500.12404/16906
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Computación)
Algoritmos computacionales
Reconocimiento óptico de patrones
https://purl.org/pe-repo/ocde/ford#1.02.00
id RPUC_be4ebdebb36c9add8fbac3ec5bbde3c4
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/172359
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Olivares Poggi, Cesar AugustoHuiza Pereyra, Eric Raphael2020-09-01T00:12:05Z2020-09-01T00:12:05Z20202020-08-31http://hdl.handle.net/20.500.12404/16906People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall.Trabajo de investigaciónengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Redes neuronales (Computación)Algoritmos computacionalesReconocimiento óptico de patroneshttps://purl.org/pe-repo/ocde/ford#1.02.00Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpusinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en InformáticaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoInformática09342040611077https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#trabajoDeInvestigacion20.500.14657/172359oai:repositorio.pucp.edu.pe:20.500.14657/1723592024-06-10 10:54:14.462http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
spellingShingle Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
Huiza Pereyra, Eric Raphael
Redes neuronales (Computación)
Algoritmos computacionales
Reconocimiento óptico de patrones
https://purl.org/pe-repo/ocde/ford#1.02.00
title_short Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title_full Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title_fullStr Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title_full_unstemmed Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
title_sort Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
author Huiza Pereyra, Eric Raphael
author_facet Huiza Pereyra, Eric Raphael
author_role author
dc.contributor.advisor.fl_str_mv Olivares Poggi, Cesar Augusto
dc.contributor.author.fl_str_mv Huiza Pereyra, Eric Raphael
dc.subject.es_ES.fl_str_mv Redes neuronales (Computación)
Algoritmos computacionales
Reconocimiento óptico de patrones
topic Redes neuronales (Computación)
Algoritmos computacionales
Reconocimiento óptico de patrones
https://purl.org/pe-repo/ocde/ford#1.02.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.02.00
description People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall.
publishDate 2020
dc.date.accessioned.none.fl_str_mv 2020-09-01T00:12:05Z
dc.date.available.none.fl_str_mv 2020-09-01T00:12:05Z
dc.date.created.none.fl_str_mv 2020
dc.date.issued.fl_str_mv 2020-08-31
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/16906
url http://hdl.handle.net/20.500.12404/16906
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639111613939712
score 13.95883
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).