Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus
Descripción del Articulo
People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automa...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2020 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/172359 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/16906 |
| Nivel de acceso: | acceso abierto |
| Materia: | Redes neuronales (Computación) Algoritmos computacionales Reconocimiento óptico de patrones https://purl.org/pe-repo/ocde/ford#1.02.00 |
| id |
RPUC_be4ebdebb36c9add8fbac3ec5bbde3c4 |
|---|---|
| oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/172359 |
| network_acronym_str |
RPUC |
| network_name_str |
PUCP-Institucional |
| repository_id_str |
2905 |
| spelling |
Olivares Poggi, Cesar AugustoHuiza Pereyra, Eric Raphael2020-09-01T00:12:05Z2020-09-01T00:12:05Z20202020-08-31http://hdl.handle.net/20.500.12404/16906People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall.Trabajo de investigaciónengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Redes neuronales (Computación)Algoritmos computacionalesReconocimiento óptico de patroneshttps://purl.org/pe-repo/ocde/ford#1.02.00Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpusinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en InformáticaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoInformática09342040611077https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#trabajoDeInvestigacion20.500.14657/172359oai:repositorio.pucp.edu.pe:20.500.14657/1723592024-06-10 10:54:14.462http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
| dc.title.es_ES.fl_str_mv |
Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus |
| title |
Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus |
| spellingShingle |
Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus Huiza Pereyra, Eric Raphael Redes neuronales (Computación) Algoritmos computacionales Reconocimiento óptico de patrones https://purl.org/pe-repo/ocde/ford#1.02.00 |
| title_short |
Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus |
| title_full |
Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus |
| title_fullStr |
Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus |
| title_full_unstemmed |
Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus |
| title_sort |
Talking with signs: a simple method to detect nouns and numbers in a non annotated signs language corpus |
| author |
Huiza Pereyra, Eric Raphael |
| author_facet |
Huiza Pereyra, Eric Raphael |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Olivares Poggi, Cesar Augusto |
| dc.contributor.author.fl_str_mv |
Huiza Pereyra, Eric Raphael |
| dc.subject.es_ES.fl_str_mv |
Redes neuronales (Computación) Algoritmos computacionales Reconocimiento óptico de patrones |
| topic |
Redes neuronales (Computación) Algoritmos computacionales Reconocimiento óptico de patrones https://purl.org/pe-repo/ocde/ford#1.02.00 |
| dc.subject.ocde.es_ES.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.02.00 |
| description |
People with deafness or hearing disabilities who aim to use computer based systems rely on state-of-art video classification and human action recognition techniques that combine traditional movement pat-tern recognition and deep learning techniques. In this work we present a pipeline for semi-automatic video annotation applied to a non-annotated Peru-vian Signs Language (PSL) corpus along with a novel method for a progressive detection of PSL elements (nSDm). We produced a set of video annotations in-dicating signs appearances for a small set of nouns and numbers along with a labeled PSL dataset (PSL dataset). A model obtained after ensemble a 2D CNN trained with movement patterns extracted from the PSL dataset using Lucas Kanade Opticalflow, and a RNN with LSTM cells trained with raw RGB frames extracted from the PSL dataset reporting state-of-art results over the PSL dataset on signs classification tasks in terms of AUC, Precision and Recall. |
| publishDate |
2020 |
| dc.date.accessioned.none.fl_str_mv |
2020-09-01T00:12:05Z |
| dc.date.available.none.fl_str_mv |
2020-09-01T00:12:05Z |
| dc.date.created.none.fl_str_mv |
2020 |
| dc.date.issued.fl_str_mv |
2020-08-31 |
| dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.other.none.fl_str_mv |
Tesis de maestría |
| format |
masterThesis |
| dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/16906 |
| url |
http://hdl.handle.net/20.500.12404/16906 |
| dc.language.iso.es_ES.fl_str_mv |
eng |
| language |
eng |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/2.5/pe/ |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
| dc.publisher.country.es_ES.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Institucional |
| collection |
PUCP-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
| repository.mail.fl_str_mv |
repositorio@pucp.pe |
| _version_ |
1835639111613939712 |
| score |
13.934021 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).