Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial
Descripción del Articulo
The environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2024 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/199387 |
Enlace del recurso: | https://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26360 https://repositorio.pucp.edu.pe/index/handle/123456789/199387 https://doi.org/10.18800/kawsaypacha.202401.A007 |
Nivel de acceso: | acceso abierto |
Materia: | Risk society Sustainable development Socio-environmental vulnerability Socio-environmental risk Machine learning Peru Sociedad del riesgo Desarrollo sostenible Vulnerabilidad socioambiental Riesgo socioambiental Aprendizaje automatizado Perú https://purl.org/pe-repo/ocde/ford#2.07.01 |
id |
RPUC_bb70f868c55f408c9993d313967f11c2 |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/199387 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Trujillo Córdova, Christian Moisés2024-04-25T17:57:50Z2024-04-25T17:57:50Z20242024-04-17https://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26360https://repositorio.pucp.edu.pe/index/handle/123456789/199387https://doi.org/10.18800/kawsaypacha.202401.A007The environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify and categorize its districts according to a certain socio-environmental risk. Faced with this challenge, a multistage quantitative methodology was developed and implemented, which made use of both machine learning (supervised and unsupervised) and spatial econometrics. The results of this methodology, visualized through emerging risk indixes, evidenced the existence of 165 districts considered socio-environmental risk zones (SERZ, in Spanish known as ZRS), mostly located in the coastal strip. Finally, it is concluded that the pattern and replicability of urban development model in Peru is currently not coherent with efforts towards environmental conservation and preservation.La crisis ambiental por el cambio climático ha obligado a muchos Estados a dirigir esfuerzos hacia la transición medioambiental para reducir la probabilidad de ocurrencia de una situación con un impacto negativo sobre su población o medioambiente. El Perú no es la excepción. En tal sentido, surge la necesidad de identificar y categorizar sus distritos según un determinado riesgo socioambiental. Ante tal reto, se construyó e implementó una metodología cuantitativa multietápica, la cual hizo uso tanto del aprendizaje automatizado (supervisado y no supervisado) como de la econometría espacial. Los resultados de la metodología, visualizados a través de índices de riesgo emergentes, evidenciaron la existencia de 165 distritos considerados zonas con riesgo socioambiental (ZRS), ubicados en su mayoría en la franja costera. Finalmente, se concluye que el patrón y replicabilidad del modelo de desarrollo urbanístico en el Perú actualmente no es coherente con los esfuerzos de conservación y preservación del medioambiente.application/pdfspaPontificia Universidad Católica del PerúPEurn:issn:2709-3689urn:issn:2523-2894info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Revista Kawsaypacha: Sociedad y Medio Ambiente; Núm. 13 (2024)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPRisk societySustainable developmentSocio-environmental vulnerabilitySocio-environmental riskMachine learningPeruSociedad del riesgoDesarrollo sostenibleVulnerabilidad socioambientalRiesgo socioambientalAprendizaje automatizadoPerúhttps://purl.org/pe-repo/ocde/ford#2.07.01Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacialSocio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometricsinfo:eu-repo/semantics/articleArtículo20.500.14657/199387oai:repositorio.pucp.edu.pe:20.500.14657/1993872024-09-18 16:02:58.86http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.es_ES.fl_str_mv |
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial |
dc.title.alternative.en_US.fl_str_mv |
Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics |
title |
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial |
spellingShingle |
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial Trujillo Córdova, Christian Moisés Risk society Sustainable development Socio-environmental vulnerability Socio-environmental risk Machine learning Peru Sociedad del riesgo Desarrollo sostenible Vulnerabilidad socioambiental Riesgo socioambiental Aprendizaje automatizado Perú https://purl.org/pe-repo/ocde/ford#2.07.01 |
title_short |
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial |
title_full |
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial |
title_fullStr |
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial |
title_full_unstemmed |
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial |
title_sort |
Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial |
author |
Trujillo Córdova, Christian Moisés |
author_facet |
Trujillo Córdova, Christian Moisés |
author_role |
author |
dc.contributor.author.fl_str_mv |
Trujillo Córdova, Christian Moisés |
dc.subject.en_US.fl_str_mv |
Risk society Sustainable development Socio-environmental vulnerability Socio-environmental risk Machine learning Peru |
topic |
Risk society Sustainable development Socio-environmental vulnerability Socio-environmental risk Machine learning Peru Sociedad del riesgo Desarrollo sostenible Vulnerabilidad socioambiental Riesgo socioambiental Aprendizaje automatizado Perú https://purl.org/pe-repo/ocde/ford#2.07.01 |
dc.subject.es_ES.fl_str_mv |
Sociedad del riesgo Desarrollo sostenible Vulnerabilidad socioambiental Riesgo socioambiental Aprendizaje automatizado Perú |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.07.01 |
description |
The environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify and categorize its districts according to a certain socio-environmental risk. Faced with this challenge, a multistage quantitative methodology was developed and implemented, which made use of both machine learning (supervised and unsupervised) and spatial econometrics. The results of this methodology, visualized through emerging risk indixes, evidenced the existence of 165 districts considered socio-environmental risk zones (SERZ, in Spanish known as ZRS), mostly located in the coastal strip. Finally, it is concluded that the pattern and replicability of urban development model in Peru is currently not coherent with efforts towards environmental conservation and preservation. |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-04-25T17:57:50Z |
dc.date.available.none.fl_str_mv |
2024-04-25T17:57:50Z |
dc.date.created.none.fl_str_mv |
2024 |
dc.date.issued.fl_str_mv |
2024-04-17 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
dc.identifier.uri.none.fl_str_mv |
https://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26360 https://repositorio.pucp.edu.pe/index/handle/123456789/199387 |
dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18800/kawsaypacha.202401.A007 |
url |
https://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26360 https://repositorio.pucp.edu.pe/index/handle/123456789/199387 https://doi.org/10.18800/kawsaypacha.202401.A007 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2709-3689 urn:issn:2523-2894 |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.es_ES.fl_str_mv |
Revista Kawsaypacha: Sociedad y Medio Ambiente; Núm. 13 (2024) |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638417764909056 |
score |
13.894945 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).