Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial

Descripción del Articulo

The environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify...

Descripción completa

Detalles Bibliográficos
Autor: Trujillo Córdova, Christian Moisés
Formato: artículo
Fecha de Publicación:2024
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/199387
Enlace del recurso:https://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26360
https://repositorio.pucp.edu.pe/index/handle/123456789/199387
https://doi.org/10.18800/kawsaypacha.202401.A007
Nivel de acceso:acceso abierto
Materia:Risk society
Sustainable development
Socio-environmental vulnerability
Socio-environmental risk
Machine learning
Peru
Sociedad del riesgo
Desarrollo sostenible
Vulnerabilidad socioambiental
Riesgo socioambiental
Aprendizaje automatizado
Perú
https://purl.org/pe-repo/ocde/ford#2.07.01
Descripción
Sumario:The environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify and categorize its districts according to a certain socio-environmental risk. Faced with this challenge, a multistage quantitative methodology was developed and implemented, which made use of both machine learning (supervised and unsupervised) and spatial econometrics. The results of this methodology, visualized through emerging risk indixes, evidenced the existence of 165 districts considered socio-environmental risk zones (SERZ, in Spanish known as ZRS), mostly located in the coastal strip. Finally, it is concluded that the pattern and replicability of urban development model in Peru is currently not coherent with efforts towards environmental conservation and preservation.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).