Numerical modeling of a transient state evaporator using object-oriented programming

Descripción del Articulo

This work presents the dynamic modeling of a refrigeration machine evaporator that uses CO2 (R744) as refrigerant fluid, for the cooling down of a liquid water stream, as required for instance by buildings air handling units. The main goal of such a work is to accurately model the transient evolutio...

Descripción completa

Detalles Bibliográficos
Autor: Cárdenas Cabezas, Jian Eduardo
Formato: tesis de maestría
Fecha de Publicación:2023
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/194312
Enlace del recurso:http://hdl.handle.net/20.500.12404/25231
Nivel de acceso:acceso abierto
Materia:Refrigeración
Control de la temperatura
Controladores programables--Diseño y construcción
https://purl.org/pe-repo/ocde/ford#2.07.03
id RPUC_ba3cbdb1be6ad4b65534c6d14dee6bcd
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/194312
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Barrantes Peña, Enrique JoséCárdenas Cabezas, Jian Eduardo2023-06-20T15:11:16Z2023-06-20T15:11:16Z20232023-06-20http://hdl.handle.net/20.500.12404/25231This work presents the dynamic modeling of a refrigeration machine evaporator that uses CO2 (R744) as refrigerant fluid, for the cooling down of a liquid water stream, as required for instance by buildings air handling units. The main goal of such a work is to accurately model the transient evolution of the evaporator outlet superheat, which is one of the main parameters to control, due to its importance in refrigeration systems. A high value of superheat temperature reduces the performance of the system, while a low or null value can generate the suction of liquid which damages the compressor. The theory of moving boundaries [19] with grouped parameters has been used for so. This method allows a precise resolution with a low numerical weight. In this method, the evaporator is divided into only two regions: the two phase region and superheated steam region, in which the energy conservation and mass conservation equations are solved. By using only two control volumes, the number of equations to be solved is smaller, thus reducing the calculation time. The ultimate aim of this work is to serve as a mathematical model usable for the design of efficient refrigeration system controllers, which are one of the most practical ways to improve the performance of these machines. The results of a numerical analysis and of a sensitivity analysis, regarding to the influence of the heat convection coefficient of the two phase region, are also presented. For this sensitivity analysis, the maximum and minimum values available in the literature, see reference [7], have been used. According to this study, the convective coefficient ofCO2 varies from 8000 to 12000 W ·m−2 ·K−1. From this sensitivity analysis, it is observed that, despite the previously mentioned uncertainty about the convective coefficient value, the latter is not influential on the rest of the calculations and on parameters such as internal pressure, length of the two-phase lengths or superheat value. This is due to the fact that the thermal resistance of the liquid hot fluid is much higher than the cold fluid in the phase change region, the global heat transfer coefficient is thus more influenced by the hot fluid thermal resistance. A maximum error of 3 percent is finally estimated in the determination of the transient superheat temperature.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/RefrigeraciónControl de la temperaturaControladores programables--Diseño y construcciónhttps://purl.org/pe-repo/ocde/ford#2.07.03Numerical modeling of a transient state evaporator using object-oriented programminginfo:eu-repo/semantics/masterThesisreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en EnergíaMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoEnergía07913376https://orcid.org/0000-0002-9037-335877025959711117Jimenez Ugarte, Fernando OctavioBarrantes Peña, Enrique JoseRojas Chavez, Freddy Jesushttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesis20.500.14657/194312oai:repositorio.pucp.edu.pe:20.500.14657/1943122025-03-11T16:30:15.257Zhttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Numerical modeling of a transient state evaporator using object-oriented programming
title Numerical modeling of a transient state evaporator using object-oriented programming
spellingShingle Numerical modeling of a transient state evaporator using object-oriented programming
Cárdenas Cabezas, Jian Eduardo
Refrigeración
Control de la temperatura
Controladores programables--Diseño y construcción
https://purl.org/pe-repo/ocde/ford#2.07.03
title_short Numerical modeling of a transient state evaporator using object-oriented programming
title_full Numerical modeling of a transient state evaporator using object-oriented programming
title_fullStr Numerical modeling of a transient state evaporator using object-oriented programming
title_full_unstemmed Numerical modeling of a transient state evaporator using object-oriented programming
title_sort Numerical modeling of a transient state evaporator using object-oriented programming
author Cárdenas Cabezas, Jian Eduardo
author_facet Cárdenas Cabezas, Jian Eduardo
author_role author
dc.contributor.advisor.fl_str_mv Barrantes Peña, Enrique José
dc.contributor.author.fl_str_mv Cárdenas Cabezas, Jian Eduardo
dc.subject.es_ES.fl_str_mv Refrigeración
Control de la temperatura
Controladores programables--Diseño y construcción
topic Refrigeración
Control de la temperatura
Controladores programables--Diseño y construcción
https://purl.org/pe-repo/ocde/ford#2.07.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.07.03
description This work presents the dynamic modeling of a refrigeration machine evaporator that uses CO2 (R744) as refrigerant fluid, for the cooling down of a liquid water stream, as required for instance by buildings air handling units. The main goal of such a work is to accurately model the transient evolution of the evaporator outlet superheat, which is one of the main parameters to control, due to its importance in refrigeration systems. A high value of superheat temperature reduces the performance of the system, while a low or null value can generate the suction of liquid which damages the compressor. The theory of moving boundaries [19] with grouped parameters has been used for so. This method allows a precise resolution with a low numerical weight. In this method, the evaporator is divided into only two regions: the two phase region and superheated steam region, in which the energy conservation and mass conservation equations are solved. By using only two control volumes, the number of equations to be solved is smaller, thus reducing the calculation time. The ultimate aim of this work is to serve as a mathematical model usable for the design of efficient refrigeration system controllers, which are one of the most practical ways to improve the performance of these machines. The results of a numerical analysis and of a sensitivity analysis, regarding to the influence of the heat convection coefficient of the two phase region, are also presented. For this sensitivity analysis, the maximum and minimum values available in the literature, see reference [7], have been used. According to this study, the convective coefficient ofCO2 varies from 8000 to 12000 W ·m−2 ·K−1. From this sensitivity analysis, it is observed that, despite the previously mentioned uncertainty about the convective coefficient value, the latter is not influential on the rest of the calculations and on parameters such as internal pressure, length of the two-phase lengths or superheat value. This is due to the fact that the thermal resistance of the liquid hot fluid is much higher than the cold fluid in the phase change region, the global heat transfer coefficient is thus more influenced by the hot fluid thermal resistance. A maximum error of 3 percent is finally estimated in the determination of the transient superheat temperature.
publishDate 2023
dc.date.accessioned.none.fl_str_mv 2023-06-20T15:11:16Z
dc.date.available.none.fl_str_mv 2023-06-20T15:11:16Z
dc.date.created.none.fl_str_mv 2023
dc.date.issued.fl_str_mv 2023-06-20
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/25231
url http://hdl.handle.net/20.500.12404/25231
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1856223668236976128
score 13.411704
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).