Segmentación de imágenes médicas mediante algoritmos de colonia de hormigas
Descripción del Articulo
El análisis de imágenes nos permite la extracción de información de éstas, y dentro de esta disciplina la segmentación permite la identificación de sus partes constituyentes. La segmentación de imágenes tiene aplicaciones en reconocimiento de patrones y sistemas de control de tráfico entre otros. Si...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2014 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/145645 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/5619 |
Nivel de acceso: | acceso abierto |
Materia: | Algoritmos Diagnóstico por imágenes Procesamiento de imágenes Programación heurística https://purl.org/pe-repo/ocde/ford#1.02.00 |
Sumario: | El análisis de imágenes nos permite la extracción de información de éstas, y dentro de esta disciplina la segmentación permite la identificación de sus partes constituyentes. La segmentación de imágenes tiene aplicaciones en reconocimiento de patrones y sistemas de control de tráfico entre otros. Si llevamos la segmentación de imágenes al rubro de imágenes médicas, las aplicaciones van desde la detección de tumores y otras patologías hasta la medición de volúmenes en tejidos. Existen diversas técnicas de segmentación de imágenes, y en este trabajo se plantea un procedimiento de segmentación de imágenes médicas basado en la metaheurística de Algoritmos de Colonia de Hormigas. Los algoritmos de esta metaheurística imitan el comportamiento de las hormigas durante su búsqueda de alimento, dado que siempre produce rutas óptimas entre la fuente de comida y el nido. Dicha conducta fue implementada mediante hormigas artificiales con el objeto de realizar tareas específicas de procesamiento de imágenes. Este procedimiento fue aplicado a imágenes de Resonancias Magnéticas Cerebrales - buscando la extracción de los segmentos correspondientes a la Materia Gris, Materia Blanca y Líquido Cefalorraquídeo- y la segmentación obtenida fue de una calidad superior a la de los algoritmos actualmente existentes para esta tarea. Este documento consta de 5 capítulos: El capítulo 1 busca definir el problema y el enfoque adoptado en este trabajo para darle solución. El capítulo 2 describe la disciplina de segmentación de imágenes y la metaheurística de Algoritmos de Colonia de Hormigas. El capítulo 3 describe los trabajos previos que busquen segmentar imágenes médicas mediante Algoritmos de Colonia de Hormigas. El capítulo 4 describe el procedimiento desarrollado, así como los resultados obtenidos en la aplicación del mismo. Finalmente, el capítulo 5 trata sobre las conclusiones y recomendaciones obtenidas como producto de este trabajo. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).