Prediciendo el rendimiento académico de estudiantes de pregrado en una universidad destacada de Perú: Una aproximación con herramientas de Machine Learning
Descripción del Articulo
        Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic perform...
              
            
    
                        | Autores: | , | 
|---|---|
| Formato: | artículo | 
| Fecha de Publicación: | 2024 | 
| Institución: | Pontificia Universidad Católica del Perú | 
| Repositorio: | PUCP-Institucional | 
| Lenguaje: | inglés | 
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/199343 | 
| Enlace del recurso: | https://revistas.pucp.edu.pe/index.php/educacion/article/view/28596/26338 https://repositorio.pucp.edu.pe/index/handle/123456789/199343 https://doi.org/10.18800/educacion.202401.M003 | 
| Nivel de acceso: | acceso abierto | 
| Materia: | Academic performance Machine Learning Higher Education Peru Desempenho Acadêmico Aprendizado de Máquina Ensino Superior Rendimiento Académico Educación Superior Perú https://purl.org/pe-repo/ocde/ford#5.03.00 | 
| Sumario: | Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic performance, many studies overlook LMIC-specific institutional factors or focus on specific courses, limiting their generalizability and policy uses. To address these issues, the authors compiled a comprehensive database using administrative and census data to predict undergraduate academic performance at the Pontifical Catholic University of Peru (PUCP). The study found that the most effective models were tree-based ensembles, particularly Random Forest, with key predictors including prior secondary school performance and university admission test scores. They present a high-performing model using only ten features that can predict future academic performance and potentially aid in reducing student drop-out at PUCP. | 
|---|
 Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
    La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
 
   
   
             
            