Predicting undergraduate academic performance in a leading Peruvian university: A machine learning approach

Descripción del Articulo

Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic perform...

Descripción completa

Detalles Bibliográficos
Autores: Salas, Fabio, Caldas, Josué
Formato: artículo
Fecha de Publicación:2024
Institución:Pontificia Universidad Católica del Perú
Repositorio:Revistas - Pontificia Universidad Católica del Perú
Lenguaje:inglés
OAI Identifier:oai:revistaspuc:article/28596
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/educacion/article/view/28596
Nivel de acceso:acceso abierto
Materia:Academic performance
Machine Learning
Higher Education
Peru
Rendimiento Académico
Educación Superior
Perú
Desempenho Acadêmico
Aprendizado de Máquina
Ensino Superior
Descripción
Sumario:Despite improved higher education accessibility in low and middle-income countries (LMICs), challenges persist in student drop-out, especially for socio-economically disadvantaged students. While machine learning models have enhanced our understanding of this challenge by predicting academic performance, many studies overlook LMIC-specific institutional factors or focus on specific courses, limiting their generalizability and policy uses. To address these issues, the authors compiled a comprehensive database using administrative and census data to predict undergraduate academic performance at the Pontifical Catholic University of Peru (PUCP). The study found that the most effective models were tree-based ensembles, particularly Random Forest, with key predictors including prior secondary school performance and university admission test scores. They present a high-performing model using only ten features that can predict future academic performance and potentially aid in reducing student drop-out at PUCP.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).