A study of well-posedness in inverse optimal control
Descripción del Articulo
En esta tesis de maestría, se aborda el problema de identificar los parámetros de ponderación en las funciones de coste definidas por un problema de control óptimo. Debido a la naturaleza del problema, abordado como un problema inverso, el enfoque de este trabajo es asegurar el buen planteamiento de...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2024 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/200008 |
| Enlace del recurso: | http://hdl.handle.net/20.500.12404/27982 |
| Nivel de acceso: | acceso abierto |
| Materia: | Control automático--Diseño y construcción Optimización matemática Sistemas lineales https://purl.org/pe-repo/ocde/ford#2.00.00 |
| Sumario: | En esta tesis de maestría, se aborda el problema de identificar los parámetros de ponderación en las funciones de coste definidas por un problema de control óptimo. Debido a la naturaleza del problema, abordado como un problema inverso, el enfoque de este trabajo es asegurar el buen planteamiento de los problemas de control óptimo inverso, un aspecto crucial que garantiza la viabilidad, unicidad y estabilidad de las funciones de coste estimadas. El estudio emplea la metodología del regulador cuadrático lineal (LQR) dentro de un sistema lineal. Un aspecto central de esta investigación es la determinación de los parámetros Q y R en el enfoque LQR, que desempeñan un papel fundamental en la definición de la eficiencia y la eficacia del sistema de control. La tesis examina cómo pueden elegirse óptimamente estos parámetros y el impacto que tienen en el rendimiento del sistema. Además, el estudio explora el uso de restricciones para mejorar la respuesta transitoria del sistema, un factor importante en el diseño de sistemas de control, garantizando que el sistema alcance rápida y eficazmente los requisitos de diseño deseados. En este trabajo se propone un enfoque de dos niveles para resolver el problema de control óptimo inverso. Se trata de utilizar programación semidefinida para recuperar los parámetros de la función de coste y evaluar la optimalidad de la solución. Además, se aborda el problema para encontrar las condiciones para minimizar la función de coste, estimando los parámetros Q y R a partir de las leyes de control observadas, y aplicando restricciones para la optimización. Se concluye con resultados que demuestran la mejora de la respuesta del sistema y un método alternativo que reduce la dependencia de la matriz de ganancia K. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).