Well-posedness for a Thir-Order PDE with Dissipation

Descripción del Articulo

In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based...

Descripción completa

Detalles Bibliográficos
Autor: Santiago Ayala, Yolanda Silvia
Formato: artículo
Fecha de Publicación:2025
Institución:Universidad Nacional de Trujillo
Repositorio:Revistas - Universidad Nacional de Trujillo
Lenguaje:inglés
OAI Identifier:oai:ojs.revistas.unitru.edu.pe:article/7084
Enlace del recurso:https://revistas.unitru.edu.pe/index.php/SSMM/article/view/7084
Nivel de acceso:acceso abierto
Materia:Semigroups theory
third-order equation
dissipative property of problem
nth order equation
Periodic Sobolev spaces
Fourier Theory
Descripción
Sumario:In this work, we prove that the Cauchy problem associated with a third-order equation with dissipation in periodic Sobolev spaces admits a unique solution. We also show that the solution depends continuously on the initial data. Our approach combines both an intuitive method, based on Fourier theory, and a more abstract framework using semigroup theory. Furthermore, by employing an alternative method, we demonstrate the uniqueness of the solution through its dissipative nature, drawing inspiration from the contributions of Iorio [1] and Santiago [2]. To deepen and enrich our study, we investigate the infinite dimensional space in which differentiability occurs and its connection to the initial data. Finally, we extend our results to equations of arbitrary nth order.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).