Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization

Descripción del Articulo

In image processing, the l0 gradient regularization (l0-grad) is an inverse problem which penalizes the l0 norm of the reconstructed image’s gradient. Current state-of-the art algorithms for solving this problem are based on the alternating direction method of multipliers (ADMM). l0-grad however, re...

Descripción completa

Detalles Bibliográficos
Autor: Vásquez Ortiz, Eduar Aníbal
Formato: tesis de maestría
Fecha de Publicación:2022
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/188678
Enlace del recurso:http://hdl.handle.net/20.500.12404/24145
Nivel de acceso:acceso abierto
Materia:Procesamiento de imágenes digitales
Procesamiento de señales
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.00.00
id RPUC_8cdbebacc3bd78ce32e313fa5e479e95
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/188678
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Rodríguez Valderrama, Paul AntonioVásquez Ortiz, Eduar Aníbal2023-01-26T23:51:16Z2023-01-26T23:51:16Z20222023-01-26http://hdl.handle.net/20.500.12404/24145In image processing, the l0 gradient regularization (l0-grad) is an inverse problem which penalizes the l0 norm of the reconstructed image’s gradient. Current state-of-the art algorithms for solving this problem are based on the alternating direction method of multipliers (ADMM). l0-grad however, reconstructs images poorly in cases where the noise level is large, giving images with plain regions and abrupt changes between them, that look very distorted. This happens because it prioritizes keeping the main edges but risks losing important details when the images are too noisy. Furthermore, since kÑuk0 is a non-continuous and non-convex regularizer, l0-grad can not be directly solved by methods like the accelerated proximal gradient (APG). This thesis presents a novel edge-preserving filtering model (Ql0-grad) that uses a relaxed form of the quadratic envelope of the l0 norm of the gradient. This enables us to control the level of details that can be lost during denoising and deblurring. The Ql0-grad model can be seen as a mixture of the Total Variation and l0-grad models. The results for the denoising and deblurring problems show that our model sharpens major edges while strongly attenuating textures. When it was compared to the l0-grad model, it reconstructed images with flat, texture-free regions that had smooth changes between them, even for scenarios where the input image was corrupted with a large amount of noise. Furthermore the averages of the differences between the obtained metrics with Ql0- grad and l0-grad were +0.96 dB SNR (signal to noise ratio), +0.96 dB PSNR (peak signal to noise ratio) and +0.03 SSIM (structural similarity index measure). An early version of the model was presented in the paper Fast gradient-based algorithm for a quadratic envelope relaxation of the l0 gradient regularization which was published in the international and indexed conference proceedings of the XXIII Symposium on Image, Signal Processing and Artificial Vision.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Procesamiento de imágenes digitalesProcesamiento de señalesAlgoritmoshttps://purl.org/pe-repo/ocde/ford#2.00.00Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularizationinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales07754238https://orcid.org/0000-0002-8501-090770327659613077Silva Obregon, Gustavo ManuelRodriguez Valderrama, Paul AntonioMurray Herrera, Víctor Manuelhttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesis20.500.14657/188678oai:repositorio.pucp.edu.pe:20.500.14657/1886782024-06-10 10:29:03.031http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
title Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
spellingShingle Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
Vásquez Ortiz, Eduar Aníbal
Procesamiento de imágenes digitales
Procesamiento de señales
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.00.00
title_short Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
title_full Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
title_fullStr Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
title_full_unstemmed Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
title_sort Novel Edge-Preserving Filtering Model Based on the Quadratic Envelope of the l0 Gradient Regularization
author Vásquez Ortiz, Eduar Aníbal
author_facet Vásquez Ortiz, Eduar Aníbal
author_role author
dc.contributor.advisor.fl_str_mv Rodríguez Valderrama, Paul Antonio
dc.contributor.author.fl_str_mv Vásquez Ortiz, Eduar Aníbal
dc.subject.es_ES.fl_str_mv Procesamiento de imágenes digitales
Procesamiento de señales
Algoritmos
topic Procesamiento de imágenes digitales
Procesamiento de señales
Algoritmos
https://purl.org/pe-repo/ocde/ford#2.00.00
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.00.00
description In image processing, the l0 gradient regularization (l0-grad) is an inverse problem which penalizes the l0 norm of the reconstructed image’s gradient. Current state-of-the art algorithms for solving this problem are based on the alternating direction method of multipliers (ADMM). l0-grad however, reconstructs images poorly in cases where the noise level is large, giving images with plain regions and abrupt changes between them, that look very distorted. This happens because it prioritizes keeping the main edges but risks losing important details when the images are too noisy. Furthermore, since kÑuk0 is a non-continuous and non-convex regularizer, l0-grad can not be directly solved by methods like the accelerated proximal gradient (APG). This thesis presents a novel edge-preserving filtering model (Ql0-grad) that uses a relaxed form of the quadratic envelope of the l0 norm of the gradient. This enables us to control the level of details that can be lost during denoising and deblurring. The Ql0-grad model can be seen as a mixture of the Total Variation and l0-grad models. The results for the denoising and deblurring problems show that our model sharpens major edges while strongly attenuating textures. When it was compared to the l0-grad model, it reconstructed images with flat, texture-free regions that had smooth changes between them, even for scenarios where the input image was corrupted with a large amount of noise. Furthermore the averages of the differences between the obtained metrics with Ql0- grad and l0-grad were +0.96 dB SNR (signal to noise ratio), +0.96 dB PSNR (peak signal to noise ratio) and +0.03 SSIM (structural similarity index measure). An early version of the model was presented in the paper Fast gradient-based algorithm for a quadratic envelope relaxation of the l0 gradient regularization which was published in the international and indexed conference proceedings of the XXIII Symposium on Image, Signal Processing and Artificial Vision.
publishDate 2022
dc.date.created.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-01-26T23:51:16Z
dc.date.available.none.fl_str_mv 2023-01-26T23:51:16Z
dc.date.issued.fl_str_mv 2023-01-26
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/24145
url http://hdl.handle.net/20.500.12404/24145
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639685860294656
score 13.887938
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).