Diseño de un modelo algorítmico basado en visión computacional para la detección y clasificación de retinopatía diabética en imágenes retinográficas digitales

Descripción del Articulo

La retinopatía diabética es una enfermedad muy común en pacientes con diabetes. Esta enfermedad ocasiona ceguera de manera gradual debido al deterioro de la retina. Este deterioro puede desencadenar en hemorragias, aneurismas y presencia de exudados en la superficie, las cuales se manifiestan en pun...

Descripción completa

Detalles Bibliográficos
Autor: Abarca Cusimayta, Daekef Rosendo
Formato: tesis de grado
Fecha de Publicación:2018
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/149034
Enlace del recurso:http://hdl.handle.net/20.500.12404/12171
Nivel de acceso:acceso abierto
Materia:Visión por computadoras--Algoritmos
Procesamiento de imágenes
https://purl.org/pe-repo/ocde/ford#1.02.00
Descripción
Sumario:La retinopatía diabética es una enfermedad muy común en pacientes con diabetes. Esta enfermedad ocasiona ceguera de manera gradual debido al deterioro de la retina. Este deterioro puede desencadenar en hemorragias, aneurismas y presencia de exudados en la superficie, las cuales se manifiestan en puntos vacíos de la visión del afectado. Las características mencionadas tienen muchas propiedades visuales como el color, forma, área de presencia que son posibles detectar por medio de imágenes retinográficas digitales. Esta propiedad hace posible el uso de la visión computacional para procesar la imagen y poder diagnosticar la enfermedad de acuerdo al grado de avance de ésta según las características clínicas presentes. El presente proyecto de tesis consiste en el desarrollo de un modelo algorítmico que logre aprovechar las características visuales para poder detectar y clasificar la enfermedad. Las características clínicas utilizadas son los microaneurismas, exudados y hemorragias. Se utilizó una base de datos pública de imágenes retinográficas y un clasificador SVM. El vector de características que se utilizó fue: área, color, número de características prensentes. Es importante mencionar que se utilizó pre-procesamiento en la imagen para excluir elementos como el fondo, disco óptico y las venas debido a que no aportan significativamente al análisis de la imagen. Para el desarrollo del algoritmo se utilizó C++ con OpenCV, la cual es una librería open source para el procesamiento de imágenes. Como resultado final de este proyecto se logró una sensibilidad del 90.17%; especificidad del 96.72% y precisión del 95.08%.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).