Agrupamiento de textos basado en la generación de Embeddings
Descripción del Articulo
Actualmente, gracias a los avances tecnológicos, principalmente en el mundo de la informática se logra disponer de una gran cantidad de información, que en su mayoría son una composición de signos codificados a nivel computacional que forman una unidad de sentido, como son los textos. Debido a la va...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2022 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/186118 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/23159 |
Nivel de acceso: | acceso abierto |
Materia: | Procesamiento en lenguaje natural (Informática) Inteligencia artificial Sistemas embebidos (Computadoras) https://purl.org/pe-repo/ocde/ford#1.02.00 |
Sumario: | Actualmente, gracias a los avances tecnológicos, principalmente en el mundo de la informática se logra disponer de una gran cantidad de información, que en su mayoría son una composición de signos codificados a nivel computacional que forman una unidad de sentido, como son los textos. Debido a la variabilidad y alta volumetría de información navegable en internet hace que poder agrupar información veraz sea una tarea complicada. El avance computacional del lenguaje de procesamiento natural está creciendo cada día para solucionar estos problemas. El presente trabajo de investigación estudia la forma como se agrupan los textos con la generación de Embeddings. En particular, se centra en usar diferentes métodos para aplicar modelos supervisados y no supervisados para que se puedan obtener resultados eficientes al momento de toparse con tareas de agrupamiento automático. Se trabajó con cinco Datasets, y como resultado de la implementación de los modelos supervisados se pudo determinar que el mejor Embedding es FastText implementado con Gensim y aplicado en modelos basados en boosting. Para los modelos no supervisados el mejor Embedding es Glove aplicado en modelos de redes neuronales con AutoEncoder y capa K-means. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).