Elementos de dinámica de iteración de funciones
Descripción del Articulo
En este trabajo desarrollaremos dos aspectos de Dinámica: El primero que trata sobre la dinámica de funciones que van de un intervalo en si mismo, introduciremos las cadenas de Markov y algunos resultados previos para alcanzar al final el teorema de Sharkovsky demostrado con grafos, el cual lo harem...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2015 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/146389 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/6990 |
Nivel de acceso: | acceso abierto |
Materia: | Sistemas dinámicos diferenciales Dinámica topológica Álgebra abstracta Teoría ergódica https://purl.org/pe-repo/ocde/ford#1.01.00 |
Sumario: | En este trabajo desarrollaremos dos aspectos de Dinámica: El primero que trata sobre la dinámica de funciones que van de un intervalo en si mismo, introduciremos las cadenas de Markov y algunos resultados previos para alcanzar al final el teorema de Sharkovsky demostrado con grafos, el cual lo haremos en la primera parte de este trabajo. La segunda parte de este trabajo tratará sobre la teoría ergódica, nos enfocaremos en dos de los teoremas fundamentales que son el teorema de recurrencia de Poincaré y el teorema de Birkhoff. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).