Separable dictionary learning for convolutional sparse coding via split updates

Descripción del Articulo

The increasing ubiquity of Convolutional Sparse Representation techniques for several image processing tasks (such as object recognition and classification, as well as image denoising) has recently sparked interest in the use of separable 2D dictionary filter banks (as alternatives to standard nonse...

Descripción completa

Detalles Bibliográficos
Autor: Quesada Pacora, Jorge Gerardo
Formato: tesis de maestría
Fecha de Publicación:2019
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146492
Enlace del recurso:http://hdl.handle.net/20.500.12404/14209
Nivel de acceso:acceso abierto
Materia:Procesamiento de imágenes digitales
Electrónica--Diccionarios
https://purl.org/pe-repo/ocde/ford#2.02.05
id RPUC_75fc0640ed0f72927b1a4c4bffd5a4da
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146492
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Rodriguez Valderrama, Paul AntonioQuesada Pacora, Jorge Gerardo2019-05-16T22:49:22Z2019-05-16T22:49:22Z20192019-05-16http://hdl.handle.net/20.500.12404/14209The increasing ubiquity of Convolutional Sparse Representation techniques for several image processing tasks (such as object recognition and classification, as well as image denoising) has recently sparked interest in the use of separable 2D dictionary filter banks (as alternatives to standard nonseparable dictionaries) for efficient Convolutional Sparse Coding (CSC) implementations. However, existing methods approximate a set of K non-separable filters via a linear combination of R (R << K) separable filters, which puts an upper bound on the latter’s quality. Furthermore, this implies the need to learn first the whole set of non-separable filters, and only then compute the separable set, which is not optimal from a computational perspective. In this context, the purpose of the present work is to propose a method to directly learn a set of K separable dictionary filters from a given image training set by drawing ideas from standard Convolutional Dictionary Learning (CDL) methods. We show that the separable filters obtained by the proposed method match the performance of an equivalent number of non-separable filters. Furthermore, the computational performance of this learning method is shown to be substantially faster than a state-of-the-art non-separable CDL method when either the image training set or the filter set are large. The method and results presented here have been published [1] at the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018). Furthermore, a preliminary approach (mentioned at the end of Chapter 2) was also published at ICASSP 2017 [2]. The structure of the document is organized as follows. Chapter 1 introduces the problem of interest and outlines the scope of this work. Chapter 2 provides the reader with a brief summary of the relevant literature in optimization, CDL and previous use of separable filters. Chapter 3 presents the details of the proposed method and some implementation highlights. Chapter 4 reports the attained computational results through several simulations. Chapter 5 summarizes the attained results and draws some final conclusions.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/2.5/pe/Procesamiento de imágenes digitalesElectrónica--Diccionarioshttps://purl.org/pe-repo/ocde/ford#2.02.05Separable dictionary learning for convolutional sparse coding via split updatesinfo:eu-repo/semantics/masterThesisreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Procesamiento de Señales e Imágenes Digitales.MaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoProcesamiento de Señales e Imágenes Digitales07754238613077https://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#tesis20.500.14657/146492oai:repositorio.pucp.edu.pe:20.500.14657/1464922025-03-11 11:57:41.533http://creativecommons.org/licenses/by/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Separable dictionary learning for convolutional sparse coding via split updates
title Separable dictionary learning for convolutional sparse coding via split updates
spellingShingle Separable dictionary learning for convolutional sparse coding via split updates
Quesada Pacora, Jorge Gerardo
Procesamiento de imágenes digitales
Electrónica--Diccionarios
https://purl.org/pe-repo/ocde/ford#2.02.05
title_short Separable dictionary learning for convolutional sparse coding via split updates
title_full Separable dictionary learning for convolutional sparse coding via split updates
title_fullStr Separable dictionary learning for convolutional sparse coding via split updates
title_full_unstemmed Separable dictionary learning for convolutional sparse coding via split updates
title_sort Separable dictionary learning for convolutional sparse coding via split updates
author Quesada Pacora, Jorge Gerardo
author_facet Quesada Pacora, Jorge Gerardo
author_role author
dc.contributor.advisor.fl_str_mv Rodriguez Valderrama, Paul Antonio
dc.contributor.author.fl_str_mv Quesada Pacora, Jorge Gerardo
dc.subject.es_ES.fl_str_mv Procesamiento de imágenes digitales
Electrónica--Diccionarios
topic Procesamiento de imágenes digitales
Electrónica--Diccionarios
https://purl.org/pe-repo/ocde/ford#2.02.05
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.05
description The increasing ubiquity of Convolutional Sparse Representation techniques for several image processing tasks (such as object recognition and classification, as well as image denoising) has recently sparked interest in the use of separable 2D dictionary filter banks (as alternatives to standard nonseparable dictionaries) for efficient Convolutional Sparse Coding (CSC) implementations. However, existing methods approximate a set of K non-separable filters via a linear combination of R (R << K) separable filters, which puts an upper bound on the latter’s quality. Furthermore, this implies the need to learn first the whole set of non-separable filters, and only then compute the separable set, which is not optimal from a computational perspective. In this context, the purpose of the present work is to propose a method to directly learn a set of K separable dictionary filters from a given image training set by drawing ideas from standard Convolutional Dictionary Learning (CDL) methods. We show that the separable filters obtained by the proposed method match the performance of an equivalent number of non-separable filters. Furthermore, the computational performance of this learning method is shown to be substantially faster than a state-of-the-art non-separable CDL method when either the image training set or the filter set are large. The method and results presented here have been published [1] at the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2018). Furthermore, a preliminary approach (mentioned at the end of Chapter 2) was also published at ICASSP 2017 [2]. The structure of the document is organized as follows. Chapter 1 introduces the problem of interest and outlines the scope of this work. Chapter 2 provides the reader with a brief summary of the relevant literature in optimization, CDL and previous use of separable filters. Chapter 3 presents the details of the proposed method and some implementation highlights. Chapter 4 reports the attained computational results through several simulations. Chapter 5 summarizes the attained results and draws some final conclusions.
publishDate 2019
dc.date.accessioned.es_ES.fl_str_mv 2019-05-16T22:49:22Z
dc.date.available.es_ES.fl_str_mv 2019-05-16T22:49:22Z
dc.date.created.es_ES.fl_str_mv 2019
dc.date.issued.fl_str_mv 2019-05-16
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/14209
url http://hdl.handle.net/20.500.12404/14209
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639218195398656
score 13.888049
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).