1
tesis de maestría
Publicado 2019
Enlace
Enlace
The increasing ubiquity of Convolutional Sparse Representation techniques for several image processing tasks (such as object recognition and classification, as well as image denoising) has recently sparked interest in the use of separable 2D dictionary filter banks (as alternatives to standard nonseparable dictionaries) for efficient Convolutional Sparse Coding (CSC) implementations. However, existing methods approximate a set of K non-separable filters via a linear combination of R (R << K) separable filters, which puts an upper bound on the latter’s quality. Furthermore, this implies the need to learn first the whole set of non-separable filters, and only then compute the separable set, which is not optimal from a computational perspective. In this context, the purpose of the present work is to propose a method to directly learn a set of K separable dictionary filters from a given im...
2
tesis de grado
Publicado 2015
Enlace
Enlace
La gestión automatizada del tránsito es un campo de investigación que integra una variedad de tecnologías y se orienta principalmente a mejorar el flujo vehicular, haciendo uso de cámaras y otros sensores para recabar información sobre el estado del tráfico. En este contexto, las técnicas de procesamiento de imágenes digitales permiten realizar diversos análisis del entorno urbano, tales como detección, conteo y seguimiento de peatones y vehículos. Entre las capacidades que requieren los sistemas que realizan dicha gestión, la estimación del número de vehículos en circulación es una de las principales. Para obtener una estimación adecuada del número de elementos móviles en un vídeo, primero debe realizarse una adecuada segmentación de dichos elementos. Existe una gran variedad de métodos que realizan dicha segmentación, sin embargo PCP (Principal Component Pursuit...
3
tesis de maestría
Publicado 2019
Enlace
Enlace
The increasing ubiquity of Convolutional Sparse Representation techniques for several image processing tasks (such as object recognition and classification, as well as image denoising) has recently sparked interest in the use of separable 2D dictionary filter banks (as alternatives to standard nonseparable dictionaries) for efficient Convolutional Sparse Coding (CSC) implementations. However, existing methods approximate a set of K non-separable filters via a linear combination of R (R << K) separable filters, which puts an upper bound on the latter’s quality. Furthermore, this implies the need to learn first the whole set of non-separable filters, and only then compute the separable set, which is not optimal from a computational perspective. In this context, the purpose of the present work is to propose a method to directly learn a set of K separable dictionary filters from a given im...
4
tesis de grado
Publicado 2015
Enlace
Enlace
La gestión automatizada del tránsito es un campo de investigación que integra una variedad de tecnologías y se orienta principalmente a mejorar el flujo vehicular, haciendo uso de cámaras y otros sensores para recabar información sobre el estado del tráfico. En este contexto, las técnicas de procesamiento de imágenes digitales permiten realizar diversos análisis del entorno urbano, tales como detección, conteo y seguimiento de peatones y vehículos. Entre las capacidades que requieren los sistemas que realizan dicha gestión, la estimación del número de vehículos en circulación es una de las principales. Para obtener una estimación adecuada del número de elementos móviles en un vídeo, primero debe realizarse una adecuada segmentación de dichos elementos. Existe una gran variedad de métodos que realizan dicha segmentación, sin embargo PCP (Principal Component Pursuit...