Diseño energético del evaporador de un ciclo rankine orgánico utilizando el refrigerante R123 para el aprovechamiento de los gases de combustión de un motor a gas natural de 3000 KW
Descripción del Articulo
En el presente trabajo se ha realizado el diseño del evaporador del ciclo Rankine orgánico, el cual cumple con la disponibilidad de espacio requerido y la caída de presión admisible. A su vez, este diseño garantiza la transferencia de calor de los gases de combustión hacia el refrigerante R123. Para...
Autor: | |
---|---|
Formato: | tesis de grado |
Fecha de Publicación: | 2016 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/155396 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/7075 |
Nivel de acceso: | acceso abierto |
Materia: | Evaporadores Transferencia de calor Intercambiadores de calor Conductividad térmica https://purl.org/pe-repo/ocde/ford#2.03.01 |
Sumario: | En el presente trabajo se ha realizado el diseño del evaporador del ciclo Rankine orgánico, el cual cumple con la disponibilidad de espacio requerido y la caída de presión admisible. A su vez, este diseño garantiza la transferencia de calor de los gases de combustión hacia el refrigerante R123. Para el diseño del evaporador se comenzó por determinar las propiedades termodinámicas y termofísicas del refrigerante R123. A su vez, se determinó la composición de los gases de combustión, temperatura de entrada, flujo másico y propiedades termofísicas de cada componente de los gases. Por lo tanto, las condiciones nominales de operación son las siguientes: presión absoluta de evaporación de 2 MPa, temperatura de condensación de 330 K, flujo másico del refrigerante R123 de 4 kg/s, temperatura de entrada de los gases de combustión 740 K y flujo másico de los gases de combustión 4.35 kg/s. Finalmente, se realizó el diseño del evaporador definiendo la geometría, número de pasos, número de tubos y separación entre tubos. De acuerdo a este análisis, se determinó que el área superficial requerida para la eficiente transferencia de calor es 37.7 m2, por lo tanto, se seleccionaron 250 tubos de ¾” de diámetro nominal y una longitud de 2.5 m. |
---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).