An application for the Gauss-Bonnet theorem
Descripción del Articulo
The principal aim of this paper is to give an example of the Gauss-Bonnet Theorem together with its anew structure by using connection and curvature matrices with stereographic projection on the unit 2-sphere, S². We determine an orthonormal basis by applying stereographic projection on S² and we ob...
Autor: | |
---|---|
Formato: | artículo |
Fecha de Publicación: | 1999 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | español |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/96180 |
Enlace del recurso: | http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8146/8441 |
Nivel de acceso: | acceso abierto |
Materia: | Teorema de Gauss-Bonnet Matemáticas https://purl.org/pe-repo/ocde/ford#1.01.00 |
id |
RPUC_4bb9818d8a5774eba6a2f3dfd0f52b1e |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/96180 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Gül, Erdal2017-09-25T21:46:15Z2017-09-25T21:46:15Z1999http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8146/8441The principal aim of this paper is to give an example of the Gauss-Bonnet Theorem together with its anew structure by using connection and curvature matrices with stereographic projection on the unit 2-sphere, S². We determine an orthonormal basis by applying stereographic projection on S² and we obtain the area of the unit 2 -sphere S² computing connection and curvature matrices.application/pdfspaPontificia Universidad Católica del PerúPEurn:issn:2305-2430urn:issn:1012-3938info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Pro Mathematica; Vol. 13, Núm. 25-26 (1999)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPTeorema de Gauss-BonnetMatemáticashttps://purl.org/pe-repo/ocde/ford#1.01.00An application for the Gauss-Bonnet theoreminfo:eu-repo/semantics/articleArtículo20.500.14657/96180oai:repositorio.pucp.edu.pe:20.500.14657/961802024-06-04 16:51:25.763http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.es_ES.fl_str_mv |
An application for the Gauss-Bonnet theorem |
title |
An application for the Gauss-Bonnet theorem |
spellingShingle |
An application for the Gauss-Bonnet theorem Gül, Erdal Teorema de Gauss-Bonnet Matemáticas https://purl.org/pe-repo/ocde/ford#1.01.00 |
title_short |
An application for the Gauss-Bonnet theorem |
title_full |
An application for the Gauss-Bonnet theorem |
title_fullStr |
An application for the Gauss-Bonnet theorem |
title_full_unstemmed |
An application for the Gauss-Bonnet theorem |
title_sort |
An application for the Gauss-Bonnet theorem |
author |
Gül, Erdal |
author_facet |
Gül, Erdal |
author_role |
author |
dc.contributor.author.fl_str_mv |
Gül, Erdal |
dc.subject.es_ES.fl_str_mv |
Teorema de Gauss-Bonnet Matemáticas |
topic |
Teorema de Gauss-Bonnet Matemáticas https://purl.org/pe-repo/ocde/ford#1.01.00 |
dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.00 |
description |
The principal aim of this paper is to give an example of the Gauss-Bonnet Theorem together with its anew structure by using connection and curvature matrices with stereographic projection on the unit 2-sphere, S². We determine an orthonormal basis by applying stereographic projection on S² and we obtain the area of the unit 2 -sphere S² computing connection and curvature matrices. |
publishDate |
1999 |
dc.date.accessioned.none.fl_str_mv |
2017-09-25T21:46:15Z |
dc.date.available.none.fl_str_mv |
2017-09-25T21:46:15Z |
dc.date.issued.fl_str_mv |
1999 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.other.none.fl_str_mv |
Artículo |
format |
article |
dc.identifier.uri.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8146/8441 |
url |
http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8146/8441 |
dc.language.iso.none.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.none.fl_str_mv |
urn:issn:2305-2430 urn:issn:1012-3938 |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.none.fl_str_mv |
PE |
dc.source.es_ES.fl_str_mv |
Pro Mathematica; Vol. 13, Núm. 25-26 (1999) |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835639145976823808 |
score |
13.971837 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).