An application for the Gauss-Bonnet theorem

Descripción del Articulo

The principal aim of this paper is to give an example of the Gauss-Bonnet Theorem together with its anew structure by using connection and curvature matrices with stereographic projection on the unit 2-sphere, S². We determine an orthonormal basis by applying stereographic projection on S² and we ob...

Descripción completa

Detalles Bibliográficos
Autor: Gül, Erdal
Formato: artículo
Fecha de Publicación:1999
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/96180
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8146/8441
Nivel de acceso:acceso abierto
Materia:Teorema de Gauss-Bonnet
Matemáticas
https://purl.org/pe-repo/ocde/ford#1.01.00
id RPUC_4bb9818d8a5774eba6a2f3dfd0f52b1e
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/96180
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Gül, Erdal2017-09-25T21:46:15Z2017-09-25T21:46:15Z1999http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8146/8441The principal aim of this paper is to give an example of the Gauss-Bonnet Theorem together with its anew structure by using connection and curvature matrices with stereographic projection on the unit 2-sphere, S². We determine an orthonormal basis by applying stereographic projection on S² and we obtain the area of the unit 2 -sphere S² computing connection and curvature matrices.application/pdfspaPontificia Universidad Católica del PerúPEurn:issn:2305-2430urn:issn:1012-3938info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Pro Mathematica; Vol. 13, Núm. 25-26 (1999)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPTeorema de Gauss-BonnetMatemáticashttps://purl.org/pe-repo/ocde/ford#1.01.00An application for the Gauss-Bonnet theoreminfo:eu-repo/semantics/articleArtículo20.500.14657/96180oai:repositorio.pucp.edu.pe:20.500.14657/961802024-06-04 16:51:25.763http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv An application for the Gauss-Bonnet theorem
title An application for the Gauss-Bonnet theorem
spellingShingle An application for the Gauss-Bonnet theorem
Gül, Erdal
Teorema de Gauss-Bonnet
Matemáticas
https://purl.org/pe-repo/ocde/ford#1.01.00
title_short An application for the Gauss-Bonnet theorem
title_full An application for the Gauss-Bonnet theorem
title_fullStr An application for the Gauss-Bonnet theorem
title_full_unstemmed An application for the Gauss-Bonnet theorem
title_sort An application for the Gauss-Bonnet theorem
author Gül, Erdal
author_facet Gül, Erdal
author_role author
dc.contributor.author.fl_str_mv Gül, Erdal
dc.subject.es_ES.fl_str_mv Teorema de Gauss-Bonnet
Matemáticas
topic Teorema de Gauss-Bonnet
Matemáticas
https://purl.org/pe-repo/ocde/ford#1.01.00
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#1.01.00
description The principal aim of this paper is to give an example of the Gauss-Bonnet Theorem together with its anew structure by using connection and curvature matrices with stereographic projection on the unit 2-sphere, S². We determine an orthonormal basis by applying stereographic projection on S² and we obtain the area of the unit 2 -sphere S² computing connection and curvature matrices.
publishDate 1999
dc.date.accessioned.none.fl_str_mv 2017-09-25T21:46:15Z
dc.date.available.none.fl_str_mv 2017-09-25T21:46:15Z
dc.date.issued.fl_str_mv 1999
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8146/8441
url http://revistas.pucp.edu.pe/index.php/promathematica/article/view/8146/8441
dc.language.iso.none.fl_str_mv spa
language spa
dc.relation.ispartof.none.fl_str_mv urn:issn:2305-2430
urn:issn:1012-3938
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.none.fl_str_mv PE
dc.source.es_ES.fl_str_mv Pro Mathematica; Vol. 13, Núm. 25-26 (1999)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835639145976823808
score 13.971837
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).