Solución exacta para un modelo simplificado de un sistema cuántico abierto

Descripción del Articulo

En este trabajo se desarrolló un modelo simplificado de un oscilador inicialmente excitado como un sistema cuántico interactuando con un gran número de osciladores como un reservorio. Todos estos osciladores están en su estado fundamental y sin acoplamientos entre sí, en el límite de acoplamiento dé...

Descripción completa

Detalles Bibliográficos
Autor: Sotelo Bazan, Eduardo Franco
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/179061
Enlace del recurso:http://hdl.handle.net/20.500.12404/19564
Nivel de acceso:acceso abierto
Materia:Osciladores armónicos
Mecánica cuántica
http://purl.org/pe-repo/ocde/ford#1.03.00
Descripción
Sumario:En este trabajo se desarrolló un modelo simplificado de un oscilador inicialmente excitado como un sistema cuántico interactuando con un gran número de osciladores como un reservorio. Todos estos osciladores están en su estado fundamental y sin acoplamientos entre sí, en el límite de acoplamiento débil entre el sistema y el reservorio. Este sistema podría ser un oscilador excitado en una micro cavidad que interactúa con el vacío del campo electromagnético a temperatura cero. El principal objetivo de este trabajo es obtener la solución exacta para la matriz de densidad del sistema en estas condiciones. El planteamiento general consiste en calcular la evolución de todos los osciladores como una única entidad aislada mediante el operador −, donde es el hamiltoniano total. Partiendo de un estado inicial total factorizable entre el sistema y el reservorio, la evolución es unitaria y se toma la traza parcial en los grados de libertad del entorno para obtener la matriz de densidad del sistema en cualquier instante del tiempo; este procedimiento requiere diagonalizar1 . Se desarrollan técnicas generales que pueden ser extendidas a versiones más elaboradas del modelo, se inicia con la descomposición del espacio de Hilbert total ℋ=ℋ0⊗ℋ1⊗⋯ℋ , que es el producto tensorial de los subespacios de Hilbert de cada oscilador ℋ, en subespacios ℋ(Σ) llamados subespacio de número de excitación definido, que corresponde al conjunto de todos los estados | ⟩∈ℋ que tienen el mismo número de excitación colectiva Σ; cumpliéndose: ℋ=ℋ(0)⊕ℋ(1)⊕ℋ(2)⋯⊕ℋ(+1), donde es el número de osciladores del entorno. Se introducen diagramas compuestos de nodos y flechas para representar la acción del hamiltoniano en cada subespacio ℋ(Σ). Se plantea una notación para trabajar en estos subespacios y calcular la sumatoria asociada a la traza parcial. Los resultados son evaluados para un reservorio de =1000 osciladores, valores particulares de la fuerza de acoplamiento y orden óhmico de la densidad espectral, contrastados con la correspondiente solución markoviana, descrita en la sección [2.3.1].
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).