Aplicación de algoritmo de aprendizaje automático para predecir el comportamiento de las acciones negociadas en el mercado brasileño

Descripción del Articulo

Modern economy offers several investment options, making capital assignments complex, slow and risky. In order to assist investors in the decision-making process, artificial intelligence tools aim at finding patterns hidden in data and providing useful, timely and accurate information. This work ana...

Descripción completa

Detalles Bibliográficos
Autores: Donadio Costa, Gabriel, Lunkes, Rogério João
Formato: artículo
Fecha de Publicación:2025
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:portugués
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/205115
Enlace del recurso:https://revistas.pucp.edu.pe/index.php/contabilidadyNegocios/article/view/29896/27628
http://hdl.handle.net/20.500.14657/205115
https://doi.org/10.18800/contabilidad.2025ESP.002
Nivel de acceso:acceso abierto
Materia:Machine Learning
Portfolio Selection
Technical Analysis
Fundamental Analysis
Aprendizaje Automático
Selección de cartera
Análisis técnico
Análisis fundamental
Aprendizado de Máquina
Seleção Portfólio
Análise Técnica
Análise Fundamentalista
https://purl.org/pe-repo/ocde/ford#5.02.04
Descripción
Sumario:Modern economy offers several investment options, making capital assignments complex, slow and risky. In order to assist investors in the decision-making process, artificial intelligence tools aim at finding patterns hidden in data and providing useful, timely and accurate information. This work analyzes the application of machine learning algorithms in the selection of portfolios in the Brazilian market. Recent research intended to predict the stock market behavior implementing machine learning with conventional methods such as technical or fundamental analysis (Anghel, 2021; Kamara et al., 2022; Nti et al., 2020b); while few combine analyses in emerging and volatile markets like Brazil. Thus, three machine learning models were trained using variables from the technical and/or fundamental analysis. The sample included 40,562 observations from six companies listed on B3, from August 1994 to December 2021. Models trained only with fundamental or technical variables evidenced low accuracy, which was translated into low learning and generalization capacity of the algorithm. In contrast, the model including the combination of technical and fundamental variables revealed an average accuracy of 70,7 % on 5 folds, which was supported by the literature that indicates that hybrid models can provide greater accuracy and lower volatility. In addition, results exceed the accuracy of previous studies (e.g. Emir et al., 2012; Kim, 2003; Zhang & Zhao, 2009), which indicates that the Support Vector Machine - SVM can also be applied to emerging markets, even in crisis times, such as COVID-19 pandemic.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).