About the stability between a foliation of degree two and the pencil of conics that defines it

Descripción del Articulo

En este artículo estudiamos foliaciones de grado dos en el plano proyectivo que acepten integral primera, también, de grado dos. Tales integrales primera definen una familia lineal de cónicas. El criterio de Hilbert-Munford es una poderosa herramienta de la teoría de invariantes geométricos. Una apli...

Descripción completa

Detalles Bibliográficos
Autor: Puchuri, Liliana
Formato: artículo
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/174997
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/promathematica/article/view/23267/22251
Nivel de acceso:acceso abierto
Materia:Foliaciones
Pincel de cónicas
Inestabilidad
https://purl.org/pe-repo/ocde/ford#1.01.00
Descripción
Sumario:En este artículo estudiamos foliaciones de grado dos en el plano proyectivo que acepten integral primera, también, de grado dos. Tales integrales primera definen una familia lineal de cónicas. El criterio de Hilbert-Munford es una poderosa herramienta de la teoría de invariantes geométricos. Una aplicación de esta teoría es la caracterización de la inestabilidad en el espacio de foliaciones de grado dos respecto a la acción por un cambio de coordenadas, y asimismo la caracterización de la estabilidad de las familias lineales de cónicas, ambas dadas por Alcántara. El objeto de este artículo es presentar una prueba alternativa del hecho de que una foliación de grado dos definida por una familia lineal de cónicas es inestable si y solo si la correspondiente familia lineal es inestable.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).