High performance implementation of MPC schemes for fast systems

Descripción del Articulo

In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of...

Descripción completa

Detalles Bibliográficos
Autor: Correa Córdova, Max Leo
Formato: tesis de maestría
Fecha de Publicación:2016
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/146004
Enlace del recurso:http://hdl.handle.net/20.500.12404/7011
Nivel de acceso:acceso abierto
Materia:Control automático
Control en tiempo real
https://purl.org/pe-repo/ocde/ford#2.02.03
id RPUC_2ea369023a0e08afa6a3d94b3a7ba074
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/146004
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling W. Selassie, Abebe GeletuMorán Cárdenas, Antonio ManuelCorrea Córdova, Max Leo2016-06-22T17:36:22Z2016-06-22T17:36:22Z20162016-06-22http://hdl.handle.net/20.500.12404/7011In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of an optimization problem. This shortcoming restricts the use of MPC for real-time control of dynamic systems with high sampling rates. This thesis aims to overcome this limitation by implementing high-performance MPC solvers for real-time control of fast systems. Hence, one of the objectives of this work is to take the advantage of the particular mathematical structures that MPC schemes exhibit and use parallel computing to improve the computational e ciency. Firstly, this thesis focuses on implementing e cient parallel solvers for linear MPC (LMPC) problems, which are described by block-structured quadratic programming (QP) problems. Speci cally, three parallel solvers are implemented: a primal-dual interior-point method with Schur-complement decomposition, a quasi-Newton method for solving the dual problem, and the operator splitting method based on the alternating direction method of multipliers (ADMM). The implementation of all these solvers is based on C++. The software package Eigen is used to implement the linear algebra operations. The Open Message Passing Interface (Open MPI) library is used for the communication between processors. Four case-studies are presented to demonstrate the potential of the implementation. Hence, the implemented solvers have shown high performance for tackling large-scale LMPC problems by providing the solutions in computation times below milliseconds. Secondly, the thesis addresses the solution of nonlinear MPC (NMPC) problems, which are described by general optimal control problems (OCPs). More precisely, implementations are done for the combined multiple-shooting and collocation (CMSC) method using a parallelization scheme. The CMSC method transforms the OCP into a nonlinear optimization problem (NLP) and de nes a set of underlying sub-problems for computing the sensitivities and discretized state values within the NLP solver. These underlying sub-problems are decoupled on the variables and thus, are solved in parallel. For the implementation, the software package IPOPT is used to solve the resulting NLP problems. The parallel solution of the sub-problems is performed based on MPI and Eigen. The computational performance of the parallel CMSC solver is tested using case studies for both OCPs and NMPC showing very promising results. Finally, applications to autonomous navigation for the SUMMIT robot are presented. Specially, reference tracking and obstacle avoidance problems are addressed using an NMPC approach. Both simulation and experimental results are presented and compared to a previous work on the SUMMIT, showing a much better computational e ciency and control performance.TesisengPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/Control automáticoControl en tiempo realhttps://purl.org/pe-repo/ocde/ford#2.02.03High performance implementation of MPC schemes for fast systemsinfo:eu-repo/semantics/masterThesisTesis de maestríareponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Ingeniería de Control y AutomatizaciónMaestríaPontificia Universidad Católica del Perú. Escuela de PosgradoIngeniería de Control y Automatización10573987712037https://purl.org/pe-repo/renati/level#maestrohttp://purl.org/pe-repo/renati/type#tesis20.500.14657/146004oai:repositorio.pucp.edu.pe:20.500.14657/1460042024-06-10 10:55:08.687http://creativecommons.org/licenses/by-nc-nd/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv High performance implementation of MPC schemes for fast systems
title High performance implementation of MPC schemes for fast systems
spellingShingle High performance implementation of MPC schemes for fast systems
Correa Córdova, Max Leo
Control automático
Control en tiempo real
https://purl.org/pe-repo/ocde/ford#2.02.03
title_short High performance implementation of MPC schemes for fast systems
title_full High performance implementation of MPC schemes for fast systems
title_fullStr High performance implementation of MPC schemes for fast systems
title_full_unstemmed High performance implementation of MPC schemes for fast systems
title_sort High performance implementation of MPC schemes for fast systems
author Correa Córdova, Max Leo
author_facet Correa Córdova, Max Leo
author_role author
dc.contributor.advisor.fl_str_mv W. Selassie, Abebe Geletu
Morán Cárdenas, Antonio Manuel
dc.contributor.author.fl_str_mv Correa Córdova, Max Leo
dc.subject.es_ES.fl_str_mv Control automático
Control en tiempo real
topic Control automático
Control en tiempo real
https://purl.org/pe-repo/ocde/ford#2.02.03
dc.subject.ocde.es_ES.fl_str_mv https://purl.org/pe-repo/ocde/ford#2.02.03
description In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of an optimization problem. This shortcoming restricts the use of MPC for real-time control of dynamic systems with high sampling rates. This thesis aims to overcome this limitation by implementing high-performance MPC solvers for real-time control of fast systems. Hence, one of the objectives of this work is to take the advantage of the particular mathematical structures that MPC schemes exhibit and use parallel computing to improve the computational e ciency. Firstly, this thesis focuses on implementing e cient parallel solvers for linear MPC (LMPC) problems, which are described by block-structured quadratic programming (QP) problems. Speci cally, three parallel solvers are implemented: a primal-dual interior-point method with Schur-complement decomposition, a quasi-Newton method for solving the dual problem, and the operator splitting method based on the alternating direction method of multipliers (ADMM). The implementation of all these solvers is based on C++. The software package Eigen is used to implement the linear algebra operations. The Open Message Passing Interface (Open MPI) library is used for the communication between processors. Four case-studies are presented to demonstrate the potential of the implementation. Hence, the implemented solvers have shown high performance for tackling large-scale LMPC problems by providing the solutions in computation times below milliseconds. Secondly, the thesis addresses the solution of nonlinear MPC (NMPC) problems, which are described by general optimal control problems (OCPs). More precisely, implementations are done for the combined multiple-shooting and collocation (CMSC) method using a parallelization scheme. The CMSC method transforms the OCP into a nonlinear optimization problem (NLP) and de nes a set of underlying sub-problems for computing the sensitivities and discretized state values within the NLP solver. These underlying sub-problems are decoupled on the variables and thus, are solved in parallel. For the implementation, the software package IPOPT is used to solve the resulting NLP problems. The parallel solution of the sub-problems is performed based on MPI and Eigen. The computational performance of the parallel CMSC solver is tested using case studies for both OCPs and NMPC showing very promising results. Finally, applications to autonomous navigation for the SUMMIT robot are presented. Specially, reference tracking and obstacle avoidance problems are addressed using an NMPC approach. Both simulation and experimental results are presented and compared to a previous work on the SUMMIT, showing a much better computational e ciency and control performance.
publishDate 2016
dc.date.accessioned.es_ES.fl_str_mv 2016-06-22T17:36:22Z
dc.date.available.es_ES.fl_str_mv 2016-06-22T17:36:22Z
dc.date.created.es_ES.fl_str_mv 2016
dc.date.issued.fl_str_mv 2016-06-22
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.other.none.fl_str_mv Tesis de maestría
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/7011
url http://hdl.handle.net/20.500.12404/7011
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638652684730368
score 13.982926
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).