Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
Descripción del Articulo
Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However...
Autor: | |
---|---|
Formato: | tesis de maestría |
Fecha de Publicación: | 2021 |
Institución: | Pontificia Universidad Católica del Perú |
Repositorio: | PUCP-Institucional |
Lenguaje: | inglés |
OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/179882 |
Enlace del recurso: | http://hdl.handle.net/20.500.12404/19908 |
Nivel de acceso: | acceso abierto |
Materia: | Redes neuronales (Computación) Espermatozoides--Análisis http://purl.org/pe-repo/ocde/ford#1.02.01 |
id |
RPUC_17ddaeac34810545b7c2ebafdbd163df |
---|---|
oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/179882 |
network_acronym_str |
RPUC |
network_name_str |
PUCP-Institucional |
repository_id_str |
2905 |
spelling |
Beltrán Castañón, César ArmandoMelendez Melendez, Roy Kelvin2021-08-11T16:48:25Z2021-08-11T16:48:25Z20212021-08-11http://hdl.handle.net/20.500.12404/19908Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Redes neuronales (Computación)Espermatozoides--Análisishttp://purl.org/pe-repo/ocde/ford#1.02.01Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architectureinfo:eu-repo/semantics/masterThesisreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Informática con mención en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de Posgrado.Informática con mención en Ciencias de la Computación29561260https://orcid.org/0000-0002-0173-414042969373611087Olivares Poggi, Cesar AugustoBeltran Castañon, Cesar ArmandoAlfaro Alfaro, Anali Jesushttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacion20.500.14657/179882oai:repositorio.pucp.edu.pe:20.500.14657/1798822025-03-11 11:07:31.625http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
dc.title.es_ES.fl_str_mv |
Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture |
title |
Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture |
spellingShingle |
Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture Melendez Melendez, Roy Kelvin Redes neuronales (Computación) Espermatozoides--Análisis http://purl.org/pe-repo/ocde/ford#1.02.01 |
title_short |
Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture |
title_full |
Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture |
title_fullStr |
Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture |
title_full_unstemmed |
Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture |
title_sort |
Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture |
author |
Melendez Melendez, Roy Kelvin |
author_facet |
Melendez Melendez, Roy Kelvin |
author_role |
author |
dc.contributor.advisor.fl_str_mv |
Beltrán Castañón, César Armando |
dc.contributor.author.fl_str_mv |
Melendez Melendez, Roy Kelvin |
dc.subject.es_ES.fl_str_mv |
Redes neuronales (Computación) Espermatozoides--Análisis |
topic |
Redes neuronales (Computación) Espermatozoides--Análisis http://purl.org/pe-repo/ocde/ford#1.02.01 |
dc.subject.ocde.es_ES.fl_str_mv |
http://purl.org/pe-repo/ocde/ford#1.02.01 |
description |
Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells. |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-08-11T16:48:25Z |
dc.date.available.none.fl_str_mv |
2021-08-11T16:48:25Z |
dc.date.created.none.fl_str_mv |
2021 |
dc.date.issued.fl_str_mv |
2021-08-11 |
dc.type.es_ES.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
dc.identifier.uri.none.fl_str_mv |
http://hdl.handle.net/20.500.12404/19908 |
url |
http://hdl.handle.net/20.500.12404/19908 |
dc.language.iso.es_ES.fl_str_mv |
eng |
language |
eng |
dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
dc.rights.uri.none.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
eu_rights_str_mv |
openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-sa/2.5/pe/ |
dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú |
dc.publisher.country.es_ES.fl_str_mv |
PE |
dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
instname_str |
Pontificia Universidad Católica del Perú |
instacron_str |
PUCP |
institution |
PUCP |
reponame_str |
PUCP-Institucional |
collection |
PUCP-Institucional |
repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
repository.mail.fl_str_mv |
repositorio@pucp.pe |
_version_ |
1835638211854991360 |
score |
13.871978 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).