Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture

Descripción del Articulo

Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However...

Descripción completa

Detalles Bibliográficos
Autor: Melendez Melendez, Roy Kelvin
Formato: tesis de maestría
Fecha de Publicación:2021
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/179882
Enlace del recurso:http://hdl.handle.net/20.500.12404/19908
Nivel de acceso:acceso abierto
Materia:Redes neuronales (Computación)
Espermatozoides--Análisis
http://purl.org/pe-repo/ocde/ford#1.02.01
id RPUC_17ddaeac34810545b7c2ebafdbd163df
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/179882
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Beltrán Castañón, César ArmandoMelendez Melendez, Roy Kelvin2021-08-11T16:48:25Z2021-08-11T16:48:25Z20212021-08-11http://hdl.handle.net/20.500.12404/19908Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells.engPontificia Universidad Católica del PerúPEinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-sa/2.5/pe/Redes neuronales (Computación)Espermatozoides--Análisishttp://purl.org/pe-repo/ocde/ford#1.02.01Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architectureinfo:eu-repo/semantics/masterThesisreponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPMaestro en Informática con mención en Ciencias de la ComputaciónMaestríaPontificia Universidad Católica del Perú. Escuela de Posgrado.Informática con mención en Ciencias de la Computación29561260https://orcid.org/0000-0002-0173-414042969373611087Olivares Poggi, Cesar AugustoBeltran Castañon, Cesar ArmandoAlfaro Alfaro, Anali Jesushttps://purl.org/pe-repo/renati/level#maestrohttps://purl.org/pe-repo/renati/type#trabajoDeInvestigacion20.500.14657/179882oai:repositorio.pucp.edu.pe:20.500.14657/1798822025-03-11 11:07:31.625http://creativecommons.org/licenses/by-nc-sa/2.5/pe/info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
spellingShingle Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
Melendez Melendez, Roy Kelvin
Redes neuronales (Computación)
Espermatozoides--Análisis
http://purl.org/pe-repo/ocde/ford#1.02.01
title_short Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title_full Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title_fullStr Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title_full_unstemmed Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
title_sort Sperm cell segmentation in digital micrographs based on convolutional neural networks using u-net architecture
author Melendez Melendez, Roy Kelvin
author_facet Melendez Melendez, Roy Kelvin
author_role author
dc.contributor.advisor.fl_str_mv Beltrán Castañón, César Armando
dc.contributor.author.fl_str_mv Melendez Melendez, Roy Kelvin
dc.subject.es_ES.fl_str_mv Redes neuronales (Computación)
Espermatozoides--Análisis
topic Redes neuronales (Computación)
Espermatozoides--Análisis
http://purl.org/pe-repo/ocde/ford#1.02.01
dc.subject.ocde.es_ES.fl_str_mv http://purl.org/pe-repo/ocde/ford#1.02.01
description Human infertility is considered a serious disease of the the reproductive system that affects more than 10% of couples worldwide,and more than 30% of reported cases are related to men. The crucial step in evaluating male in fertility is a semen analysis, highly dependent on sperm morphology. However,this analysis is done at the laboratory manually and depends mainly on the doctor’s experience. Besides,it is laborious, and there is also a high degree of interlaboratory variability in the results. This article proposes applying a specialized convolutional neural network architecture (U-Net),which focuses on the segmentation of sperm cells in micrographs to overcome these problems.The results showed high scores for the model segmentation metrics such as precisión (93%), IoU score (86%),and DICE score of 93%. Moreover,we can conclude that U-net architecture turned out to be a good option to carry out the segmentation of sperm cells.
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-08-11T16:48:25Z
dc.date.available.none.fl_str_mv 2021-08-11T16:48:25Z
dc.date.created.none.fl_str_mv 2021
dc.date.issued.fl_str_mv 2021-08-11
dc.type.es_ES.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12404/19908
url http://hdl.handle.net/20.500.12404/19908
dc.language.iso.es_ES.fl_str_mv eng
language eng
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.none.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-sa/2.5/pe/
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú
dc.publisher.country.es_ES.fl_str_mv PE
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1835638211854991360
score 13.871978
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).