A Short Term Forecasting Model for the Spanish GDP and its Demand Components
Descripción del Articulo
This paper proposes a new version of the Spain-STING (Spain, Short-Term INdicator of Growth), a dynamic factor model used by the Banco de España for the short-term forecasting of the Spanish economy. The extended and revised version of the Spain-STING presented in this document includes a forecast f...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2020 |
| Institución: | Pontificia Universidad Católica del Perú |
| Repositorio: | PUCP-Institucional |
| Lenguaje: | inglés |
| OAI Identifier: | oai:repositorio.pucp.edu.pe:20.500.14657/173818 |
| Enlace del recurso: | http://revistas.pucp.edu.pe/index.php/economia/article/view/21873/21329 https://doi.org/10.18800/economia.202001.001 |
| Nivel de acceso: | acceso abierto |
| Materia: | Business cycles Spanish economy Dynamic Factor models Forecasting https://purl.org/pe-repo/ocde/ford#5.02.01 |
| id |
RPUC_0381d41d856bf0ee921587c6f66d9f74 |
|---|---|
| oai_identifier_str |
oai:repositorio.pucp.edu.pe:20.500.14657/173818 |
| network_acronym_str |
RPUC |
| network_name_str |
PUCP-Institucional |
| repository_id_str |
2905 |
| spelling |
Arencibia Pareja, AnaGomez-Loscos, Anade Luis López, MercedesPerez-Quiros, Gabriel2020-03-10http://revistas.pucp.edu.pe/index.php/economia/article/view/21873/21329https://doi.org/10.18800/economia.202001.001This paper proposes a new version of the Spain-STING (Spain, Short-Term INdicator of Growth), a dynamic factor model used by the Banco de España for the short-term forecasting of the Spanish economy. The extended and revised version of the Spain-STING presented in this document includes a forecast for each of the demand components of the National Accounts. In order to select the indicators that best estimate the Spanish GDP and its demand components, several models are considered. Following this strategy, the selected models are those in which the common factor explains the highest proportion of the variance of the GDP. These models allow us to forecast GDP, private consumption, public expenditure, investment in capital goods, construction investment, exports and imports in a consistent way. We assess the predictive power of the models for GDP and its demand components for the period 2005–2017. With regard to the GDP forecast, we find some improvement of the predictive power compared to the previous version of Spain-STING. As for the demand components, we show that our proposal has better predictive power than other possible time series models.application/pdfengPontificia Universidad Católica del Perú. Fondo EditorialPEurn:issn:2304-4306urn:issn:0254-4415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Economía; Volume 43 Issue 85 (2020)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPBusiness cyclesSpanish economyDynamic Factor modelsForecastinghttps://purl.org/pe-repo/ocde/ford#5.02.01A Short Term Forecasting Model for the Spanish GDP and its Demand Componentsinfo:eu-repo/semantics/articleArtículo20.500.14657/173818oai:repositorio.pucp.edu.pe:20.500.14657/1738182025-06-11 11:25:09.668http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe |
| dc.title.es_ES.fl_str_mv |
A Short Term Forecasting Model for the Spanish GDP and its Demand Components |
| title |
A Short Term Forecasting Model for the Spanish GDP and its Demand Components |
| spellingShingle |
A Short Term Forecasting Model for the Spanish GDP and its Demand Components Arencibia Pareja, Ana Business cycles Spanish economy Dynamic Factor models Forecasting https://purl.org/pe-repo/ocde/ford#5.02.01 |
| title_short |
A Short Term Forecasting Model for the Spanish GDP and its Demand Components |
| title_full |
A Short Term Forecasting Model for the Spanish GDP and its Demand Components |
| title_fullStr |
A Short Term Forecasting Model for the Spanish GDP and its Demand Components |
| title_full_unstemmed |
A Short Term Forecasting Model for the Spanish GDP and its Demand Components |
| title_sort |
A Short Term Forecasting Model for the Spanish GDP and its Demand Components |
| author |
Arencibia Pareja, Ana |
| author_facet |
Arencibia Pareja, Ana Gomez-Loscos, Ana de Luis López, Mercedes Perez-Quiros, Gabriel |
| author_role |
author |
| author2 |
Gomez-Loscos, Ana de Luis López, Mercedes Perez-Quiros, Gabriel |
| author2_role |
author author author |
| dc.contributor.author.fl_str_mv |
Arencibia Pareja, Ana Gomez-Loscos, Ana de Luis López, Mercedes Perez-Quiros, Gabriel |
| dc.subject.en_US.fl_str_mv |
Business cycles Spanish economy Dynamic Factor models |
| topic |
Business cycles Spanish economy Dynamic Factor models Forecasting https://purl.org/pe-repo/ocde/ford#5.02.01 |
| dc.subject.es_ES.fl_str_mv |
Forecasting |
| dc.subject.ocde.none.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#5.02.01 |
| description |
This paper proposes a new version of the Spain-STING (Spain, Short-Term INdicator of Growth), a dynamic factor model used by the Banco de España for the short-term forecasting of the Spanish economy. The extended and revised version of the Spain-STING presented in this document includes a forecast for each of the demand components of the National Accounts. In order to select the indicators that best estimate the Spanish GDP and its demand components, several models are considered. Following this strategy, the selected models are those in which the common factor explains the highest proportion of the variance of the GDP. These models allow us to forecast GDP, private consumption, public expenditure, investment in capital goods, construction investment, exports and imports in a consistent way. We assess the predictive power of the models for GDP and its demand components for the period 2005–2017. With regard to the GDP forecast, we find some improvement of the predictive power compared to the previous version of Spain-STING. As for the demand components, we show that our proposal has better predictive power than other possible time series models. |
| publishDate |
2020 |
| dc.date.issued.fl_str_mv |
2020-03-10 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article |
| dc.type.other.none.fl_str_mv |
Artículo |
| format |
article |
| dc.identifier.uri.none.fl_str_mv |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21873/21329 |
| dc.identifier.doi.none.fl_str_mv |
https://doi.org/10.18800/economia.202001.001 |
| url |
http://revistas.pucp.edu.pe/index.php/economia/article/view/21873/21329 https://doi.org/10.18800/economia.202001.001 |
| dc.language.iso.none.fl_str_mv |
eng |
| language |
eng |
| dc.relation.ispartof.none.fl_str_mv |
urn:issn:2304-4306 urn:issn:0254-4415 |
| dc.rights.es_ES.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.*.fl_str_mv |
http://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0 |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.es_ES.fl_str_mv |
Pontificia Universidad Católica del Perú. Fondo Editorial |
| dc.publisher.country.none.fl_str_mv |
PE |
| dc.source.es_ES.fl_str_mv |
Economía; Volume 43 Issue 85 (2020) |
| dc.source.none.fl_str_mv |
reponame:PUCP-Institucional instname:Pontificia Universidad Católica del Perú instacron:PUCP |
| instname_str |
Pontificia Universidad Católica del Perú |
| instacron_str |
PUCP |
| institution |
PUCP |
| reponame_str |
PUCP-Institucional |
| collection |
PUCP-Institucional |
| repository.name.fl_str_mv |
Repositorio Institucional de la PUCP |
| repository.mail.fl_str_mv |
repositorio@pucp.pe |
| _version_ |
1836272202496868352 |
| score |
13.9875345 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).