A Short Term Forecasting Model for the Spanish GDP and its Demand Components

Descripción del Articulo

This paper proposes a new version of the Spain-STING (Spain, Short-Term INdicator of Growth), a dynamic factor model used by the Banco de España for the short-term forecasting of the Spanish economy. The extended and revised version of the Spain-STING presented in this document includes a forecast f...

Descripción completa

Detalles Bibliográficos
Autores: Arencibia Pareja, Ana, Gomez-Loscos, Ana, de Luis López, Mercedes, Perez-Quiros, Gabriel
Formato: artículo
Fecha de Publicación:2020
Institución:Pontificia Universidad Católica del Perú
Repositorio:PUCP-Institucional
Lenguaje:inglés
OAI Identifier:oai:repositorio.pucp.edu.pe:20.500.14657/173818
Enlace del recurso:http://revistas.pucp.edu.pe/index.php/economia/article/view/21873/21329
https://doi.org/10.18800/economia.202001.001
Nivel de acceso:acceso abierto
Materia:Business cycles
Spanish economy
Dynamic Factor models
Forecasting
https://purl.org/pe-repo/ocde/ford#5.02.01
id RPUC_0381d41d856bf0ee921587c6f66d9f74
oai_identifier_str oai:repositorio.pucp.edu.pe:20.500.14657/173818
network_acronym_str RPUC
network_name_str PUCP-Institucional
repository_id_str 2905
spelling Arencibia Pareja, AnaGomez-Loscos, Anade Luis López, MercedesPerez-Quiros, Gabriel2020-03-10http://revistas.pucp.edu.pe/index.php/economia/article/view/21873/21329https://doi.org/10.18800/economia.202001.001This paper proposes a new version of the Spain-STING (Spain, Short-Term INdicator of Growth), a dynamic factor model used by the Banco de España for the short-term forecasting of the Spanish economy. The extended and revised version of the Spain-STING presented in this document includes a forecast for each of the demand components of the National Accounts. In order to select the indicators that best estimate the Spanish GDP and its demand components, several models are considered. Following this strategy, the selected models are those in which the common factor explains the highest proportion of the variance of the GDP. These models allow us to forecast GDP, private consumption, public expenditure, investment in capital goods, construction investment, exports and imports in a consistent way. We assess the predictive power of the models for GDP and its demand components for the period 2005–2017. With regard to the GDP forecast, we find some improvement of the predictive power compared to the previous version of Spain-STING. As for the demand components, we show that our proposal has better predictive power than other possible time series models.application/pdfengPontificia Universidad Católica del Perú. Fondo EditorialPEurn:issn:2304-4306urn:issn:0254-4415info:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by/4.0Economía; Volume 43 Issue 85 (2020)reponame:PUCP-Institucionalinstname:Pontificia Universidad Católica del Perúinstacron:PUCPBusiness cyclesSpanish economyDynamic Factor modelsForecastinghttps://purl.org/pe-repo/ocde/ford#5.02.01A Short Term Forecasting Model for the Spanish GDP and its Demand Componentsinfo:eu-repo/semantics/articleArtículo20.500.14657/173818oai:repositorio.pucp.edu.pe:20.500.14657/1738182025-06-11 11:25:09.668http://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessmetadata.onlyhttps://repositorio.pucp.edu.peRepositorio Institucional de la PUCPrepositorio@pucp.pe
dc.title.es_ES.fl_str_mv A Short Term Forecasting Model for the Spanish GDP and its Demand Components
title A Short Term Forecasting Model for the Spanish GDP and its Demand Components
spellingShingle A Short Term Forecasting Model for the Spanish GDP and its Demand Components
Arencibia Pareja, Ana
Business cycles
Spanish economy
Dynamic Factor models
Forecasting
https://purl.org/pe-repo/ocde/ford#5.02.01
title_short A Short Term Forecasting Model for the Spanish GDP and its Demand Components
title_full A Short Term Forecasting Model for the Spanish GDP and its Demand Components
title_fullStr A Short Term Forecasting Model for the Spanish GDP and its Demand Components
title_full_unstemmed A Short Term Forecasting Model for the Spanish GDP and its Demand Components
title_sort A Short Term Forecasting Model for the Spanish GDP and its Demand Components
author Arencibia Pareja, Ana
author_facet Arencibia Pareja, Ana
Gomez-Loscos, Ana
de Luis López, Mercedes
Perez-Quiros, Gabriel
author_role author
author2 Gomez-Loscos, Ana
de Luis López, Mercedes
Perez-Quiros, Gabriel
author2_role author
author
author
dc.contributor.author.fl_str_mv Arencibia Pareja, Ana
Gomez-Loscos, Ana
de Luis López, Mercedes
Perez-Quiros, Gabriel
dc.subject.en_US.fl_str_mv Business cycles
Spanish economy
Dynamic Factor models
topic Business cycles
Spanish economy
Dynamic Factor models
Forecasting
https://purl.org/pe-repo/ocde/ford#5.02.01
dc.subject.es_ES.fl_str_mv Forecasting
dc.subject.ocde.none.fl_str_mv https://purl.org/pe-repo/ocde/ford#5.02.01
description This paper proposes a new version of the Spain-STING (Spain, Short-Term INdicator of Growth), a dynamic factor model used by the Banco de España for the short-term forecasting of the Spanish economy. The extended and revised version of the Spain-STING presented in this document includes a forecast for each of the demand components of the National Accounts. In order to select the indicators that best estimate the Spanish GDP and its demand components, several models are considered. Following this strategy, the selected models are those in which the common factor explains the highest proportion of the variance of the GDP. These models allow us to forecast GDP, private consumption, public expenditure, investment in capital goods, construction investment, exports and imports in a consistent way. We assess the predictive power of the models for GDP and its demand components for the period 2005–2017. With regard to the GDP forecast, we find some improvement of the predictive power compared to the previous version of Spain-STING. As for the demand components, we show that our proposal has better predictive power than other possible time series models.
publishDate 2020
dc.date.issued.fl_str_mv 2020-03-10
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.other.none.fl_str_mv Artículo
format article
dc.identifier.uri.none.fl_str_mv http://revistas.pucp.edu.pe/index.php/economia/article/view/21873/21329
dc.identifier.doi.none.fl_str_mv https://doi.org/10.18800/economia.202001.001
url http://revistas.pucp.edu.pe/index.php/economia/article/view/21873/21329
https://doi.org/10.18800/economia.202001.001
dc.language.iso.none.fl_str_mv eng
language eng
dc.relation.ispartof.none.fl_str_mv urn:issn:2304-4306
urn:issn:0254-4415
dc.rights.es_ES.fl_str_mv info:eu-repo/semantics/openAccess
dc.rights.uri.*.fl_str_mv http://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0
dc.format.none.fl_str_mv application/pdf
dc.publisher.es_ES.fl_str_mv Pontificia Universidad Católica del Perú. Fondo Editorial
dc.publisher.country.none.fl_str_mv PE
dc.source.es_ES.fl_str_mv Economía; Volume 43 Issue 85 (2020)
dc.source.none.fl_str_mv reponame:PUCP-Institucional
instname:Pontificia Universidad Católica del Perú
instacron:PUCP
instname_str Pontificia Universidad Católica del Perú
instacron_str PUCP
institution PUCP
reponame_str PUCP-Institucional
collection PUCP-Institucional
repository.name.fl_str_mv Repositorio Institucional de la PUCP
repository.mail.fl_str_mv repositorio@pucp.pe
_version_ 1836272202496868352
score 13.9875345
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).