Modelos predictivos con índice de ROX y variables basales para el uso de ventilación mecánica invasiva en residentes a elevada altitud utilizando una cohorte de pacientes fallecidos por COVID-19

Descripción del Articulo

El propósito de este estudio secundario fue construir modelos predictivos para el uso de ventilación mecánica invasiva (VMI) usando el índice de ROX (iROX) y variables basales en residentes a elevada altitud (1500 a 3500 msnm) utilizando una cohorte de pacientes fallecidos por COVID-19. El iROX ha s...

Descripción completa

Detalles Bibliográficos
Autor: Delgado Flores, Carolina Jaqueline
Formato: tesis de maestría
Fecha de Publicación:2024
Institución:Universidad Peruana Cayetano Heredia
Repositorio:UPCH-Institucional
Lenguaje:español
OAI Identifier:oai:repositorio.upch.edu.pe:20.500.12866/16092
Enlace del recurso:https://hdl.handle.net/20.500.12866/16092
Nivel de acceso:acceso abierto
Materia:COVID-19
Índice de ROX
Ventilación Mecánica Invasiva
Elevada Altitud
Perú
http://purl.org/pe-repo/ocde/ford#3.01.08
http://purl.org/pe-repo/ocde/ford#3.02.07
http://purl.org/pe-repo/ocde/ford#3.03.08
Descripción
Sumario:El propósito de este estudio secundario fue construir modelos predictivos para el uso de ventilación mecánica invasiva (VMI) usando el índice de ROX (iROX) y variables basales en residentes a elevada altitud (1500 a 3500 msnm) utilizando una cohorte de pacientes fallecidos por COVID-19. El iROX ha sido descrito como útil para predecir múltiples desenlaces negativos en contextos de baja altitud geográfica. No obstante, su valor predictivo para VMI, en conjunto con otras variables, no ha sido previamente caracterizado en pacientes a elevada altitud. Utilizando información recabada entre 2020 – 2021, se ejecutó un análisis secundario para construir modelos predictivos usando datos de una cohorte retrospectiva. En específico, se incluyó información de 767 pacientes fallecidos por COVID-19 en tres hospitales del Cusco, Perú. Tres métodos; teórico o basado en estudios previos (modelo A), LASSO (modelo B), y backward selection (modelo C) fueron utilizados en el modelamiento. En la submuestra de entrenamiento (70%), múltiples parámetros son reportados, incluyendo curvas ROC y áreas bajo la curva (AUC). En la submuestra de validación (30%) se realizó la calibración interna. Los modelos B (AUC=0.71 [IC95%: 0.66 – 0.77]; 11 variables) y C (AUC=0.71 [IC95%: 0.65 – 0.76]; 6 variables) fueron seleccionados por tener un mejor rendimiento y mejor balance entre sensibilidad y especificidad. Los predictores basales comunes en ambos modelos fueron; edad, sexo, dolor muscular, dolor de pecho, artralgia e iROX. Por tanto, es factible concluir que ambos modelos tuvieron un rendimiento regular para predecir el uso de VMI en residentes a elevada altitud. No obstante, ambos modelos mostraron un pobre rendimiento en la calibración interna. En conclusión, este estudio brinda una primera aproximación de la evaluación de variables basales obtenidas a bajo costo como potenciales predictores de uso de VMI. A futuro, se recomienda la validación de nuestros modelos.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).