Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas
Descripción del Articulo
Actualmente, la Inteligencia Artificial (AI) es una de las áreas más estudiadas, en la que se aplican técnicas y métodos en escenarios de incertidumbre y adquisición de conocimiento para la toma de decisiones. Entre las técnicas de AI, destacan las Redes Bayesianas (BNs), que se implementan en dos f...
| Autor: | |
|---|---|
| Formato: | tesis doctoral |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Nacional Del Altiplano |
| Repositorio: | UNAP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:https://repositorio.unap.edu.pe:20.500.14082/21098 |
| Enlace del recurso: | https://repositorio.unap.edu.pe/handle/20.500.14082/21098 |
| Nivel de acceso: | acceso abierto |
| Materia: | Redes Bayesianas Aprendizaje estructural Hill Climbing Tabu Search BIC https://purl.org/pe-repo/ocde/ford#1.01.03 |
| id |
RNAP_54289a82543cd45674220dcb8c678a6d |
|---|---|
| oai_identifier_str |
oai:https://repositorio.unap.edu.pe:20.500.14082/21098 |
| network_acronym_str |
RNAP |
| network_name_str |
UNAP-Institucional |
| repository_id_str |
9382 |
| dc.title.es_PE.fl_str_mv |
Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas |
| title |
Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas |
| spellingShingle |
Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas Quispe Carita, Angel Javier Redes Bayesianas Aprendizaje estructural Hill Climbing Tabu Search BIC https://purl.org/pe-repo/ocde/ford#1.01.03 |
| title_short |
Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas |
| title_full |
Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas |
| title_fullStr |
Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas |
| title_full_unstemmed |
Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas |
| title_sort |
Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas |
| author |
Quispe Carita, Angel Javier |
| author_facet |
Quispe Carita, Angel Javier |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Ibañez Quispe, Vladimiro |
| dc.contributor.author.fl_str_mv |
Quispe Carita, Angel Javier |
| dc.subject.es_PE.fl_str_mv |
Redes Bayesianas Aprendizaje estructural Hill Climbing Tabu Search BIC |
| topic |
Redes Bayesianas Aprendizaje estructural Hill Climbing Tabu Search BIC https://purl.org/pe-repo/ocde/ford#1.01.03 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#1.01.03 |
| description |
Actualmente, la Inteligencia Artificial (AI) es una de las áreas más estudiadas, en la que se aplican técnicas y métodos en escenarios de incertidumbre y adquisición de conocimiento para la toma de decisiones. Entre las técnicas de AI, destacan las Redes Bayesianas (BNs), que se implementan en dos fases: aprendizaje paramétrico y estructural. La fase de aprendizaje estructural es especialmente compleja y requiere la intervención de un experto, que en muchas situaciones no está disponible, por lo que surgen innovadoras técnicas de aprendizaje estructural, que es el punto de partidad de esta investigación cuyo objetivo fue comparar y clasificar las técnicas de aprendizaje estructural de la Red Bayesiana según su desempeño. La investigación fue de tipo comparativo y cuantitativo, seleccionándose técnicas de aprendizaje estructural utilizadas ampliamente en el campo de las redes bayesianas, aplicado a una base de datos que es un benchmark estándar bastante difundido en la literatura bayesianas, para cada técnica se aplicó la validación cruzada, Criterio de Información Bayesiano (Bayesian Information Criterion, BIC), Pérdida esperada y ANOVA encontrándose que las técnicas Hill Climbing (HC) y Tabu Search (TABU) destacaron del resto, obteniendo un valor BIC medio (-1168.277) que las ubicó por encima de sus competidoras. Las técnicas se clasificaron en dos grupos a y b, la clasificación y comparación proporciona una guía útil para los investigadores y profesionales que buscan seleccionar la técnica más adecuada para sus propias investigaciones o aplicaciones. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-01-03T16:21:52Z |
| dc.date.available.none.fl_str_mv |
2024-01-03T16:21:52Z |
| dc.date.issued.fl_str_mv |
2023-12-19 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.unap.edu.pe/handle/20.500.14082/21098 |
| url |
https://repositorio.unap.edu.pe/handle/20.500.14082/21098 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Nacional del Altiplano. Repositorio Institucional |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:UNAP-Institucional instname:Universidad Nacional Del Altiplano instacron:UNAP |
| instname_str |
Universidad Nacional Del Altiplano |
| instacron_str |
UNAP |
| institution |
UNAP |
| reponame_str |
UNAP-Institucional |
| collection |
UNAP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.unap.edu.pe/bitstream/20.500.14082/21098/1/Quispe_Carita_Angel_Javier.pdf https://repositorio.unap.edu.pe/bitstream/20.500.14082/21098/2/Reporte%20de%20similitud.pdf https://repositorio.unap.edu.pe/bitstream/20.500.14082/21098/3/license.txt |
| bitstream.checksum.fl_str_mv |
da043c3c6528bfae76c9b1f80d7f4ca4 6e9e1b5ccd6f85a86a8364c41f567b54 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio institucional de la Universidad Nacional del Altiplano |
| repository.mail.fl_str_mv |
dspace-help@myu.edu |
| _version_ |
1819881017958203392 |
| spelling |
Ibañez Quispe, VladimiroQuispe Carita, Angel Javier2024-01-03T16:21:52Z2024-01-03T16:21:52Z2023-12-19https://repositorio.unap.edu.pe/handle/20.500.14082/21098Actualmente, la Inteligencia Artificial (AI) es una de las áreas más estudiadas, en la que se aplican técnicas y métodos en escenarios de incertidumbre y adquisición de conocimiento para la toma de decisiones. Entre las técnicas de AI, destacan las Redes Bayesianas (BNs), que se implementan en dos fases: aprendizaje paramétrico y estructural. La fase de aprendizaje estructural es especialmente compleja y requiere la intervención de un experto, que en muchas situaciones no está disponible, por lo que surgen innovadoras técnicas de aprendizaje estructural, que es el punto de partidad de esta investigación cuyo objetivo fue comparar y clasificar las técnicas de aprendizaje estructural de la Red Bayesiana según su desempeño. La investigación fue de tipo comparativo y cuantitativo, seleccionándose técnicas de aprendizaje estructural utilizadas ampliamente en el campo de las redes bayesianas, aplicado a una base de datos que es un benchmark estándar bastante difundido en la literatura bayesianas, para cada técnica se aplicó la validación cruzada, Criterio de Información Bayesiano (Bayesian Information Criterion, BIC), Pérdida esperada y ANOVA encontrándose que las técnicas Hill Climbing (HC) y Tabu Search (TABU) destacaron del resto, obteniendo un valor BIC medio (-1168.277) que las ubicó por encima de sus competidoras. Las técnicas se clasificaron en dos grupos a y b, la clasificación y comparación proporciona una guía útil para los investigadores y profesionales que buscan seleccionar la técnica más adecuada para sus propias investigaciones o aplicaciones.application/pdfspaUniversidad Nacional del Altiplano. Repositorio InstitucionalPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esRedes BayesianasAprendizaje estructuralHill ClimbingTabu SearchBIChttps://purl.org/pe-repo/ocde/ford#1.01.03Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianasinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionreponame:UNAP-Institucionalinstname:Universidad Nacional Del Altiplanoinstacron:UNAPSUNEDUDoctoris Scientiae en Estadística AplicadaEstadística AplicadaUniversidad Nacional del Altiplano. Escuela de Posgradohttps://orcid.org/0000-0002-0277-494501216522https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/nivel#doctor542029Coyla Idme, LeonelJimenez Chura, Adolfo CarlosJuarez Vargas Juan, Carlos42266179ORIGINALQuispe_Carita_Angel_Javier.pdfQuispe_Carita_Angel_Javier.pdfapplication/pdf3445085https://repositorio.unap.edu.pe/bitstream/20.500.14082/21098/1/Quispe_Carita_Angel_Javier.pdfda043c3c6528bfae76c9b1f80d7f4ca4MD51Reporte de similitud.pdfReporte de similitud.pdfapplication/pdf157654https://repositorio.unap.edu.pe/bitstream/20.500.14082/21098/2/Reporte%20de%20similitud.pdf6e9e1b5ccd6f85a86a8364c41f567b54MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unap.edu.pe/bitstream/20.500.14082/21098/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.14082/21098oai:https://repositorio.unap.edu.pe:20.500.14082/210982024-01-03 16:21:52.423Repositorio institucional de la Universidad Nacional del Altiplanodspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.945474 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).