Comparación y Clasificación de las Técnicas de Aprendizaje Estructural de las Redes Bayesianas

Descripción del Articulo

Actualmente, la Inteligencia Artificial (AI) es una de las áreas más estudiadas, en la que se aplican técnicas y métodos en escenarios de incertidumbre y adquisición de conocimiento para la toma de decisiones. Entre las técnicas de AI, destacan las Redes Bayesianas (BNs), que se implementan en dos f...

Descripción completa

Detalles Bibliográficos
Autor: Quispe Carita, Angel Javier
Formato: tesis doctoral
Fecha de Publicación:2023
Institución:Universidad Nacional Del Altiplano
Repositorio:UNAP-Institucional
Lenguaje:español
OAI Identifier:oai:https://repositorio.unap.edu.pe:20.500.14082/21098
Enlace del recurso:https://repositorio.unap.edu.pe/handle/20.500.14082/21098
Nivel de acceso:acceso abierto
Materia:Redes Bayesianas
Aprendizaje estructural
Hill Climbing
Tabu Search
BIC
https://purl.org/pe-repo/ocde/ford#1.01.03
Descripción
Sumario:Actualmente, la Inteligencia Artificial (AI) es una de las áreas más estudiadas, en la que se aplican técnicas y métodos en escenarios de incertidumbre y adquisición de conocimiento para la toma de decisiones. Entre las técnicas de AI, destacan las Redes Bayesianas (BNs), que se implementan en dos fases: aprendizaje paramétrico y estructural. La fase de aprendizaje estructural es especialmente compleja y requiere la intervención de un experto, que en muchas situaciones no está disponible, por lo que surgen innovadoras técnicas de aprendizaje estructural, que es el punto de partidad de esta investigación cuyo objetivo fue comparar y clasificar las técnicas de aprendizaje estructural de la Red Bayesiana según su desempeño. La investigación fue de tipo comparativo y cuantitativo, seleccionándose técnicas de aprendizaje estructural utilizadas ampliamente en el campo de las redes bayesianas, aplicado a una base de datos que es un benchmark estándar bastante difundido en la literatura bayesianas, para cada técnica se aplicó la validación cruzada, Criterio de Información Bayesiano (Bayesian Information Criterion, BIC), Pérdida esperada y ANOVA encontrándose que las técnicas Hill Climbing (HC) y Tabu Search (TABU) destacaron del resto, obteniendo un valor BIC medio (-1168.277) que las ubicó por encima de sus competidoras. Las técnicas se clasificaron en dos grupos a y b, la clasificación y comparación proporciona una guía útil para los investigadores y profesionales que buscan seleccionar la técnica más adecuada para sus propias investigaciones o aplicaciones.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).