Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning
Descripción del Articulo
El uso de técnicas de análisis de sentimientos para capturar las opiniones de las masas a través de las redes sociales ha aumentado en los últimos años en diferentes áreas como la política, así lo demuestran estudios realizados alrededor del mundo, donde los niveles de asertividad alcanzados en la p...
| Autor: | |
|---|---|
| Formato: | tesis de maestría |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad Nacional Del Altiplano |
| Repositorio: | UNAP-Institucional |
| Lenguaje: | español |
| OAI Identifier: | oai:https://repositorio.unap.edu.pe:20.500.14082/21160 |
| Enlace del recurso: | https://repositorio.unap.edu.pe/handle/20.500.14082/21160 |
| Nivel de acceso: | acceso abierto |
| Materia: | Análisis de sentimientos Aprendizaje automático Intención de voto Redes sociales Tuit https://purl.org/pe-repo/ocde/ford#2.02.04 |
| id |
RNAP_35dfe3228adb8c5d955a386289e040bf |
|---|---|
| oai_identifier_str |
oai:https://repositorio.unap.edu.pe:20.500.14082/21160 |
| network_acronym_str |
RNAP |
| network_name_str |
UNAP-Institucional |
| repository_id_str |
9382 |
| dc.title.es_PE.fl_str_mv |
Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning |
| title |
Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning |
| spellingShingle |
Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning Flores Arnao, Alodia Análisis de sentimientos Aprendizaje automático Intención de voto Redes sociales Tuit https://purl.org/pe-repo/ocde/ford#2.02.04 |
| title_short |
Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning |
| title_full |
Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning |
| title_fullStr |
Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning |
| title_full_unstemmed |
Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning |
| title_sort |
Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learning |
| author |
Flores Arnao, Alodia |
| author_facet |
Flores Arnao, Alodia |
| author_role |
author |
| dc.contributor.advisor.fl_str_mv |
Condori Alejo, Henry Iván |
| dc.contributor.author.fl_str_mv |
Flores Arnao, Alodia |
| dc.subject.es_PE.fl_str_mv |
Análisis de sentimientos Aprendizaje automático Intención de voto Redes sociales Tuit |
| topic |
Análisis de sentimientos Aprendizaje automático Intención de voto Redes sociales Tuit https://purl.org/pe-repo/ocde/ford#2.02.04 |
| dc.subject.ocde.es_PE.fl_str_mv |
https://purl.org/pe-repo/ocde/ford#2.02.04 |
| description |
El uso de técnicas de análisis de sentimientos para capturar las opiniones de las masas a través de las redes sociales ha aumentado en los últimos años en diferentes áreas como la política, así lo demuestran estudios realizados alrededor del mundo, donde los niveles de asertividad alcanzados en la predicción de intención de voto fueron significativos. Considerando el contexto latinoamericano, como las Elecciones Presidenciales Perú 2021, el estudio se propuso determinar la técnica de Machine Learning más asertiva para la predicción de intención de voto aplicada a un modelo de análisis de sentimientos en Twitter. Para ello, se construyó un conjunto de datos denominado Elecciones Bicentenario 2021 Tweets, conformado por 49,916 tweets históricos publicados en idioma español, cuyas características fueron extraídas usando TF-IDF, BOW y N-Gramas, por el impacto que tienen en el desempeño del análisis de sentimientos. Luego, se aplicaron algoritmos de clasificación como Regresión Logística, Naïve Bayes, Máquinas de Vectores de Soporte, y Árboles de Decisión al modelo propuesto, los cuales fueron evaluados de manera cuantitativa, en términos de exactitud, precisión, exhaustividad y valor-F1. Los resultados electorales y los obtenidos por el modelo coinciden con el sentimiento expresado en las redes sociales en la mayoría de los casos, observándose que Regresión Logística tiene mejor desempeño, alcanzado un 79% de exactitud y precisión, 73% de exhaustividad y 76% de valor-F1. En conclusión, el algoritmo más asertivo para la predicción de intención de voto fue Regresión Logística, seguido por Máquinas de Vectores de Soporte, Naïve Bayes y Árboles de Decisión. |
| publishDate |
2023 |
| dc.date.accessioned.none.fl_str_mv |
2024-01-09T20:07:59Z |
| dc.date.available.none.fl_str_mv |
2024-01-09T20:07:59Z |
| dc.date.issued.fl_str_mv |
2023-10-20 |
| dc.type.es_PE.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.version.es_PE.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.none.fl_str_mv |
https://repositorio.unap.edu.pe/handle/20.500.14082/21160 |
| url |
https://repositorio.unap.edu.pe/handle/20.500.14082/21160 |
| dc.language.iso.es_PE.fl_str_mv |
spa |
| language |
spa |
| dc.relation.ispartof.fl_str_mv |
SUNEDU |
| dc.rights.es_PE.fl_str_mv |
info:eu-repo/semantics/openAccess |
| dc.rights.uri.es_PE.fl_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
https://creativecommons.org/licenses/by/4.0/deed.es |
| dc.format.es_PE.fl_str_mv |
application/pdf |
| dc.publisher.es_PE.fl_str_mv |
Universidad Nacional del Altiplano. Repositorio Institucional |
| dc.publisher.country.es_PE.fl_str_mv |
PE |
| dc.source.none.fl_str_mv |
reponame:UNAP-Institucional instname:Universidad Nacional Del Altiplano instacron:UNAP |
| instname_str |
Universidad Nacional Del Altiplano |
| instacron_str |
UNAP |
| institution |
UNAP |
| reponame_str |
UNAP-Institucional |
| collection |
UNAP-Institucional |
| bitstream.url.fl_str_mv |
https://repositorio.unap.edu.pe/bitstream/20.500.14082/21160/1/Flores_Arnao_Alodia.pdf https://repositorio.unap.edu.pe/bitstream/20.500.14082/21160/2/Reporte%20de%20similitud.pdf https://repositorio.unap.edu.pe/bitstream/20.500.14082/21160/3/license.txt |
| bitstream.checksum.fl_str_mv |
fa47e240047a8bb8a176bfff3fb5d647 18cbc9d3ce10c62f955842f378821c0c 8a4605be74aa9ea9d79846c1fba20a33 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositorio institucional de la Universidad Nacional del Altiplano |
| repository.mail.fl_str_mv |
dspace-help@myu.edu |
| _version_ |
1819880820847935488 |
| spelling |
Condori Alejo, Henry IvánFlores Arnao, Alodia2024-01-09T20:07:59Z2024-01-09T20:07:59Z2023-10-20https://repositorio.unap.edu.pe/handle/20.500.14082/21160El uso de técnicas de análisis de sentimientos para capturar las opiniones de las masas a través de las redes sociales ha aumentado en los últimos años en diferentes áreas como la política, así lo demuestran estudios realizados alrededor del mundo, donde los niveles de asertividad alcanzados en la predicción de intención de voto fueron significativos. Considerando el contexto latinoamericano, como las Elecciones Presidenciales Perú 2021, el estudio se propuso determinar la técnica de Machine Learning más asertiva para la predicción de intención de voto aplicada a un modelo de análisis de sentimientos en Twitter. Para ello, se construyó un conjunto de datos denominado Elecciones Bicentenario 2021 Tweets, conformado por 49,916 tweets históricos publicados en idioma español, cuyas características fueron extraídas usando TF-IDF, BOW y N-Gramas, por el impacto que tienen en el desempeño del análisis de sentimientos. Luego, se aplicaron algoritmos de clasificación como Regresión Logística, Naïve Bayes, Máquinas de Vectores de Soporte, y Árboles de Decisión al modelo propuesto, los cuales fueron evaluados de manera cuantitativa, en términos de exactitud, precisión, exhaustividad y valor-F1. Los resultados electorales y los obtenidos por el modelo coinciden con el sentimiento expresado en las redes sociales en la mayoría de los casos, observándose que Regresión Logística tiene mejor desempeño, alcanzado un 79% de exactitud y precisión, 73% de exhaustividad y 76% de valor-F1. En conclusión, el algoritmo más asertivo para la predicción de intención de voto fue Regresión Logística, seguido por Máquinas de Vectores de Soporte, Naïve Bayes y Árboles de Decisión.application/pdfspaUniversidad Nacional del Altiplano. Repositorio InstitucionalPEinfo:eu-repo/semantics/openAccesshttps://creativecommons.org/licenses/by/4.0/deed.esAnálisis de sentimientosAprendizaje automáticoIntención de votoRedes socialesTuitTwitterhttps://purl.org/pe-repo/ocde/ford#2.02.04Intención de voto a través de un modelo de análisis de sentimientos en twitter basado en técnicas de Machine Learninginfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionreponame:UNAP-Institucionalinstname:Universidad Nacional Del Altiplanoinstacron:UNAPSUNEDUMagíster Scientiae en Ingeniería de SistemasIngeniería de SistemasUniversidad Nacional del Altiplano. Escuela de Posgradohttps://orcid.org/0000-0002-1219-555X01325355https://purl.org/pe-repo/renati/type#tesishttps://purl.org/pe-repo/renati/nivel#maestro612049Sosa Maydana, Carlos BorisHolguín Holguín, EdgarHuayta Flores, Lenin43201154ORIGINALFlores_Arnao_Alodia.pdfFlores_Arnao_Alodia.pdfapplication/pdf5117952https://repositorio.unap.edu.pe/bitstream/20.500.14082/21160/1/Flores_Arnao_Alodia.pdffa47e240047a8bb8a176bfff3fb5d647MD51Reporte de similitud.pdfReporte de similitud.pdfapplication/pdf2538068https://repositorio.unap.edu.pe/bitstream/20.500.14082/21160/2/Reporte%20de%20similitud.pdf18cbc9d3ce10c62f955842f378821c0cMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unap.edu.pe/bitstream/20.500.14082/21160/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD5320.500.14082/21160oai:https://repositorio.unap.edu.pe:20.500.14082/211602024-01-09 20:08:00.012Repositorio institucional de la Universidad Nacional del Altiplanodspace-help@myu.eduTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
| score |
13.936249 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).