STRATEGIES IN MACHINE LEARNING
Descripción del Articulo
Artificial intelligence has achieved great potential in technological development, especially in the optimization of internal combustion engines. This research seeks to forecast the performance of diesel engines using regression strategies in machine learning. The study, with a quantitative and appl...
| Autores: | , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2025 |
| Institución: | Universidad de San Martín de Porres |
| Repositorio: | Revistas - Universidad de San Martín de Porres |
| Lenguaje: | español |
| OAI Identifier: | oai:revistas.usmp.edu.pe:article/2934 |
| Enlace del recurso: | https://portalrevistas.aulavirtualusmp.pe/index.php/rc/article/view/2934 |
| Nivel de acceso: | acceso abierto |
| Materia: | Artificial intelligence Multiple linear regression Machine learning diesel engine power torque fuel consumption Inteligencia artificial Regresión lineal múltiple Aprendizaje automático potencia consumo de combustible |
| Sumario: | Artificial intelligence has achieved great potential in technological development, especially in the optimization of internal combustion engines. This research seeks to forecast the performance of diesel engines using regression strategies in machine learning. The study, with a quantitative and applied approach, collects data from a 30-liter, 1200 HP Komatsu diesel engine through dynamometric tests. Brake power, torque and fuel consumption are measured, monitoring various operating parameters. Using the data, a forecasting model was developed using multiple linear regression in Python. The results show a high correlation between the input and output parameters, highlighting the intake manifold pressure as the most relevant. The predictions reach high R² values: torque (0.96), brake power (0.97) and instantaneous consumption (0.98). The coefficients of the regression model applicable to the input parameters are also determined. In conclusion, machine learning algorithms, specifically multiple linear regression, are effective in predicting the behavior of diesel engines in dynamometric tests. |
|---|
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).