Analysis of an input dataset to perform a tonal analysis system

Descripción del Articulo

Musical analysis is a process that has been carried out for years where different experts have sought to study various musical pieces. This process begins with the learning of tone, note and chord detection, where students have to train their ears to be able to carry it out. In this context, in the...

Descripción completa

Detalles Bibliográficos
Autores: Vilca Rojas, Víctor Manuel, Salcedo Chávez, Aldair Bryan, Castillo Rojas, Jairo Miguel, Byrne Macias, Valery
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/85
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/85
https://doi.org/10.48168/innosoft.s11.a85
https://purl.org/42411/s11/a85
https://n2t.net/ark:/42411/s11/a85
Nivel de acceso:acceso abierto
Materia:Artificial intelligence
decision tree
music analysis
pitch detection
music
Inteligencia artificial
árbol de decisión
análisis musical
detección de tonos
música
Descripción
Sumario:Musical analysis is a process that has been carried out for years where different experts have sought to study various musical pieces. This process begins with the learning of tone, note and chord detection, where students have to train their ears to be able to carry it out. In this context, in the following work a decision tree has been made based on a dataset of Bach choirs in order to predict chords from tones. The dataset was divided into 80% to create the tree and 20% for testing, then the data transformation was performed to perform an analysis of the data, with this a decision tree was finally created with a depth of 15 and an accuracy of 75.52%, the tests were finally carried out and we found good results for the accuracy of the tree.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).