Predicting the success of banking telemarketing through the use of decision trees

Descripción del Articulo

Telemarketing is an interactive direct marketing technique in which a telemarketing agent solicits potential customers over the phone to make a sale of merchandise or a service. One of the great problems of telemarketing is to specify the list of clients that presents a greater probability of buying...

Descripción completa

Detalles Bibliográficos
Autores: Ventura Ramos, Rony Tito, Jacobo Castillo, Andrew Pold, Begazo Ticona, Jesus, Gomez Velasco, Brian Jhosep
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/84
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/84
https://doi.org/10.48168/innosoft.s11.a84
https://purl.org/42411/s11/a84
https://n2t.net/ark:/42411/s11/a84
Nivel de acceso:acceso abierto
Materia:Telemarketing
Decision trees
Artificial Intelligence
Árboles de decisión
Inteligencia artificial
Descripción
Sumario:Telemarketing is an interactive direct marketing technique in which a telemarketing agent solicits potential customers over the phone to make a sale of merchandise or a service. One of the great problems of telemarketing is to specify the list of clients that presents a greater probability of buying the product that is offered. In this article, we propose a personalized decision support system that can automatically predict the decision of the target audience after making a telemarketing call, in order to increase the effectiveness of direct advertising campaigns and consequently reduce the cost and cost. campaign time. The artificial intelligence method used in this work is the decision tree evaluated with the metrics of precision, accuracy and completeness. After applying the artificial intelligence method we obtain an accuracy, precision and completeness greater than 80%. The conclusions reached by the team are that in order to improve the decision tree model it is important to carry out a prior analysis of the data using statistical techniques or diagrams, to obtain a reference to the data and apply balancing techniques to obtain the best possible model.
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).