Predicting the success of banking telemarketing through the use of decision trees
Descripción del Articulo
Telemarketing is an interactive direct marketing technique in which a telemarketing agent solicits potential customers over the phone to make a sale of merchandise or a service. One of the great problems of telemarketing is to specify the list of clients that presents a greater probability of buying...
Autores: | , , , |
---|---|
Formato: | artículo |
Fecha de Publicación: | 2023 |
Institución: | Universidad La Salle |
Repositorio: | Revistas - Universidad La Salle |
Lenguaje: | español |
OAI Identifier: | oai:ojs.revistas.ulasalle.edu.pe:article/84 |
Enlace del recurso: | https://revistas.ulasalle.edu.pe/innosoft/article/view/84 https://doi.org/10.48168/innosoft.s11.a84 https://purl.org/42411/s11/a84 https://n2t.net/ark:/42411/s11/a84 |
Nivel de acceso: | acceso abierto |
Materia: | Telemarketing Decision trees Artificial Intelligence Árboles de decisión Inteligencia artificial |
id |
REVUSALLE_8a962887dd685e750e5f4b1fe503163f |
---|---|
oai_identifier_str |
oai:ojs.revistas.ulasalle.edu.pe:article/84 |
network_acronym_str |
REVUSALLE |
network_name_str |
Revistas - Universidad La Salle |
repository_id_str |
|
spelling |
Predicting the success of banking telemarketing through the use of decision treesPredicción del éxito del telemarketing bancario mediante el uso de árboles de decisiónVentura Ramos, Rony TitoJacobo Castillo, Andrew PoldBegazo Ticona, JesusGomez Velasco, Brian JhosepTelemarketingDecision treesArtificial IntelligenceTelemarketingÁrboles de decisiónInteligencia artificialTelemarketing is an interactive direct marketing technique in which a telemarketing agent solicits potential customers over the phone to make a sale of merchandise or a service. One of the great problems of telemarketing is to specify the list of clients that presents a greater probability of buying the product that is offered. In this article, we propose a personalized decision support system that can automatically predict the decision of the target audience after making a telemarketing call, in order to increase the effectiveness of direct advertising campaigns and consequently reduce the cost and cost. campaign time. The artificial intelligence method used in this work is the decision tree evaluated with the metrics of precision, accuracy and completeness. After applying the artificial intelligence method we obtain an accuracy, precision and completeness greater than 80%. The conclusions reached by the team are that in order to improve the decision tree model it is important to carry out a prior analysis of the data using statistical techniques or diagrams, to obtain a reference to the data and apply balancing techniques to obtain the best possible model.El telemercadeo es una técnica interactiva de mercadeo directo en la que un agente de telemercadeo solicita clientes potenciales a través del teléfono para realizar una venta de mercadería o servicio. Uno de los grandes problemas del telemarketing es especificar la lista de clientes que presentan una mayor probabilidad de comprar el producto que se ofrece. En este artículo proponemos un sistema de apoyo en la toma de decisiones personalizado que puede predecir automáticamente la decisión del público objetivo luego de realizar una llamada de telemarketing, con el fin de aumentar la efectividad de las campañas publicitarias directas y en consecuencia reducir el costo y tiempo de la campaña. El método de inteligencia artificial utilizado en este trabajo es el árbol de decisión evaluado con las métricas de precisión, exactitud y exhaustividad. Luego de aplicar el método de inteligencia artificial obtenemos una exactitud, precisión y exhaustividad mayor al 80%. Las conclusiones a los que el equipo llegó son que para mejorar el modelo de árbol de decisión es importante realizar un análisis previo de los datos mediante técnicas estadísticas o diagramas, para obtener referencia de los datos y aplicar técnicas de balanceo para obtener el mejor modelo posible.Universidad La Salle2023-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/84https://doi.org/10.48168/innosoft.s11.a84https://purl.org/42411/s11/a84https://n2t.net/ark:/42411/s11/a84Innovation and Software; Vol 4 No 1 (2023): March - August; 122-137Innovación y Software; Vol. 4 Núm. 1 (2023): Marzo - Agosto; 122-1372708-09352708-0927https://doi.org/10.48168/innosoft.s11https://purl.org/42411/s11https://n2t.net/ark:/42411/s11reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/84/105https://revistas.ulasalle.edu.pe/innosoft/article/view/84/106https://purl.org/42411/s11/a84/g105https://purl.org/42411/s11/a84/g106https://n2t.net/ark:/42411/s11/a84/g105https://n2t.net/ark:/42411/s11/a84/g10620232023Derechos de autor 2023 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/842025-07-03T08:02:08Z |
dc.title.none.fl_str_mv |
Predicting the success of banking telemarketing through the use of decision trees Predicción del éxito del telemarketing bancario mediante el uso de árboles de decisión |
title |
Predicting the success of banking telemarketing through the use of decision trees |
spellingShingle |
Predicting the success of banking telemarketing through the use of decision trees Ventura Ramos, Rony Tito Telemarketing Decision trees Artificial Intelligence Telemarketing Árboles de decisión Inteligencia artificial |
title_short |
Predicting the success of banking telemarketing through the use of decision trees |
title_full |
Predicting the success of banking telemarketing through the use of decision trees |
title_fullStr |
Predicting the success of banking telemarketing through the use of decision trees |
title_full_unstemmed |
Predicting the success of banking telemarketing through the use of decision trees |
title_sort |
Predicting the success of banking telemarketing through the use of decision trees |
dc.creator.none.fl_str_mv |
Ventura Ramos, Rony Tito Jacobo Castillo, Andrew Pold Begazo Ticona, Jesus Gomez Velasco, Brian Jhosep |
author |
Ventura Ramos, Rony Tito |
author_facet |
Ventura Ramos, Rony Tito Jacobo Castillo, Andrew Pold Begazo Ticona, Jesus Gomez Velasco, Brian Jhosep |
author_role |
author |
author2 |
Jacobo Castillo, Andrew Pold Begazo Ticona, Jesus Gomez Velasco, Brian Jhosep |
author2_role |
author author author |
dc.subject.none.fl_str_mv |
Telemarketing Decision trees Artificial Intelligence Telemarketing Árboles de decisión Inteligencia artificial |
topic |
Telemarketing Decision trees Artificial Intelligence Telemarketing Árboles de decisión Inteligencia artificial |
description |
Telemarketing is an interactive direct marketing technique in which a telemarketing agent solicits potential customers over the phone to make a sale of merchandise or a service. One of the great problems of telemarketing is to specify the list of clients that presents a greater probability of buying the product that is offered. In this article, we propose a personalized decision support system that can automatically predict the decision of the target audience after making a telemarketing call, in order to increase the effectiveness of direct advertising campaigns and consequently reduce the cost and cost. campaign time. The artificial intelligence method used in this work is the decision tree evaluated with the metrics of precision, accuracy and completeness. After applying the artificial intelligence method we obtain an accuracy, precision and completeness greater than 80%. The conclusions reached by the team are that in order to improve the decision tree model it is important to carry out a prior analysis of the data using statistical techniques or diagrams, to obtain a reference to the data and apply balancing techniques to obtain the best possible model. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-03-30 |
dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Journal paper text Artículos originales |
format |
article |
status_str |
publishedVersion |
dc.identifier.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/84 https://doi.org/10.48168/innosoft.s11.a84 https://purl.org/42411/s11/a84 https://n2t.net/ark:/42411/s11/a84 |
url |
https://revistas.ulasalle.edu.pe/innosoft/article/view/84 https://doi.org/10.48168/innosoft.s11.a84 https://purl.org/42411/s11/a84 https://n2t.net/ark:/42411/s11/a84 |
dc.language.none.fl_str_mv |
spa |
language |
spa |
dc.relation.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/84/105 https://revistas.ulasalle.edu.pe/innosoft/article/view/84/106 https://purl.org/42411/s11/a84/g105 https://purl.org/42411/s11/a84/g106 https://n2t.net/ark:/42411/s11/a84/g105 https://n2t.net/ark:/42411/s11/a84/g106 |
dc.rights.none.fl_str_mv |
Derechos de autor 2023 Innovación y Software https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Derechos de autor 2023 Innovación y Software https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf text/html |
dc.coverage.none.fl_str_mv |
2023 2023 |
dc.publisher.none.fl_str_mv |
Universidad La Salle |
publisher.none.fl_str_mv |
Universidad La Salle |
dc.source.none.fl_str_mv |
Innovation and Software; Vol 4 No 1 (2023): March - August; 122-137 Innovación y Software; Vol. 4 Núm. 1 (2023): Marzo - Agosto; 122-137 2708-0935 2708-0927 https://doi.org/10.48168/innosoft.s11 https://purl.org/42411/s11 https://n2t.net/ark:/42411/s11 reponame:Revistas - Universidad La Salle instname:Universidad La Salle instacron:USALLE |
instname_str |
Universidad La Salle |
instacron_str |
USALLE |
institution |
USALLE |
reponame_str |
Revistas - Universidad La Salle |
collection |
Revistas - Universidad La Salle |
repository.name.fl_str_mv |
|
repository.mail.fl_str_mv |
|
_version_ |
1845894996861911040 |
score |
12.989271 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).