Predicting the success of banking telemarketing through the use of decision trees

Descripción del Articulo

Telemarketing is an interactive direct marketing technique in which a telemarketing agent solicits potential customers over the phone to make a sale of merchandise or a service. One of the great problems of telemarketing is to specify the list of clients that presents a greater probability of buying...

Descripción completa

Detalles Bibliográficos
Autores: Ventura Ramos, Rony Tito, Jacobo Castillo, Andrew Pold, Begazo Ticona, Jesus, Gomez Velasco, Brian Jhosep
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/84
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/84
https://doi.org/10.48168/innosoft.s11.a84
https://purl.org/42411/s11/a84
https://n2t.net/ark:/42411/s11/a84
Nivel de acceso:acceso abierto
Materia:Telemarketing
Decision trees
Artificial Intelligence
Árboles de decisión
Inteligencia artificial
id REVUSALLE_8a962887dd685e750e5f4b1fe503163f
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/84
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Predicting the success of banking telemarketing through the use of decision treesPredicción del éxito del telemarketing bancario mediante el uso de árboles de decisiónVentura Ramos, Rony TitoJacobo Castillo, Andrew PoldBegazo Ticona, JesusGomez Velasco, Brian JhosepTelemarketingDecision treesArtificial IntelligenceTelemarketingÁrboles de decisiónInteligencia artificialTelemarketing is an interactive direct marketing technique in which a telemarketing agent solicits potential customers over the phone to make a sale of merchandise or a service. One of the great problems of telemarketing is to specify the list of clients that presents a greater probability of buying the product that is offered. In this article, we propose a personalized decision support system that can automatically predict the decision of the target audience after making a telemarketing call, in order to increase the effectiveness of direct advertising campaigns and consequently reduce the cost and cost. campaign time. The artificial intelligence method used in this work is the decision tree evaluated with the metrics of precision, accuracy and completeness. After applying the artificial intelligence method we obtain an accuracy, precision and completeness greater than 80%. The conclusions reached by the team are that in order to improve the decision tree model it is important to carry out a prior analysis of the data using statistical techniques or diagrams, to obtain a reference to the data and apply balancing techniques to obtain the best possible model.El telemercadeo es una técnica interactiva de mercadeo directo en la que un agente de telemercadeo solicita clientes potenciales a través del teléfono para realizar una venta de mercadería o servicio. Uno de los grandes problemas del telemarketing es especificar la lista de clientes que presentan una mayor probabilidad de comprar el producto que se ofrece. En este artículo proponemos un sistema de apoyo en la toma de decisiones personalizado que puede predecir automáticamente la decisión del público objetivo luego de realizar una llamada de telemarketing, con el fin de aumentar la efectividad de las campañas publicitarias directas y en consecuencia reducir el costo y tiempo de la campaña. El método de inteligencia artificial utilizado en este trabajo es el árbol de decisión evaluado con las métricas de precisión, exactitud y exhaustividad. Luego de aplicar el método de inteligencia artificial obtenemos una exactitud, precisión y exhaustividad mayor al 80%. Las conclusiones a los que el equipo llegó son que para mejorar el modelo de árbol de decisión es importante realizar un análisis previo de los datos mediante técnicas estadísticas o diagramas, para obtener referencia de los datos y aplicar técnicas de balanceo para obtener el mejor modelo posible.Universidad La Salle2023-03-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/84https://doi.org/10.48168/innosoft.s11.a84https://purl.org/42411/s11/a84https://n2t.net/ark:/42411/s11/a84Innovation and Software; Vol 4 No 1 (2023): March - August; 122-137Innovación y Software; Vol. 4 Núm. 1 (2023): Marzo - Agosto; 122-1372708-09352708-0927https://doi.org/10.48168/innosoft.s11https://purl.org/42411/s11https://n2t.net/ark:/42411/s11reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/84/105https://revistas.ulasalle.edu.pe/innosoft/article/view/84/106https://purl.org/42411/s11/a84/g105https://purl.org/42411/s11/a84/g106https://n2t.net/ark:/42411/s11/a84/g105https://n2t.net/ark:/42411/s11/a84/g10620232023Derechos de autor 2023 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/842025-07-03T08:02:08Z
dc.title.none.fl_str_mv Predicting the success of banking telemarketing through the use of decision trees
Predicción del éxito del telemarketing bancario mediante el uso de árboles de decisión
title Predicting the success of banking telemarketing through the use of decision trees
spellingShingle Predicting the success of banking telemarketing through the use of decision trees
Ventura Ramos, Rony Tito
Telemarketing
Decision trees
Artificial Intelligence
Telemarketing
Árboles de decisión
Inteligencia artificial
title_short Predicting the success of banking telemarketing through the use of decision trees
title_full Predicting the success of banking telemarketing through the use of decision trees
title_fullStr Predicting the success of banking telemarketing through the use of decision trees
title_full_unstemmed Predicting the success of banking telemarketing through the use of decision trees
title_sort Predicting the success of banking telemarketing through the use of decision trees
dc.creator.none.fl_str_mv Ventura Ramos, Rony Tito
Jacobo Castillo, Andrew Pold
Begazo Ticona, Jesus
Gomez Velasco, Brian Jhosep
author Ventura Ramos, Rony Tito
author_facet Ventura Ramos, Rony Tito
Jacobo Castillo, Andrew Pold
Begazo Ticona, Jesus
Gomez Velasco, Brian Jhosep
author_role author
author2 Jacobo Castillo, Andrew Pold
Begazo Ticona, Jesus
Gomez Velasco, Brian Jhosep
author2_role author
author
author
dc.subject.none.fl_str_mv Telemarketing
Decision trees
Artificial Intelligence
Telemarketing
Árboles de decisión
Inteligencia artificial
topic Telemarketing
Decision trees
Artificial Intelligence
Telemarketing
Árboles de decisión
Inteligencia artificial
description Telemarketing is an interactive direct marketing technique in which a telemarketing agent solicits potential customers over the phone to make a sale of merchandise or a service. One of the great problems of telemarketing is to specify the list of clients that presents a greater probability of buying the product that is offered. In this article, we propose a personalized decision support system that can automatically predict the decision of the target audience after making a telemarketing call, in order to increase the effectiveness of direct advertising campaigns and consequently reduce the cost and cost. campaign time. The artificial intelligence method used in this work is the decision tree evaluated with the metrics of precision, accuracy and completeness. After applying the artificial intelligence method we obtain an accuracy, precision and completeness greater than 80%. The conclusions reached by the team are that in order to improve the decision tree model it is important to carry out a prior analysis of the data using statistical techniques or diagrams, to obtain a reference to the data and apply balancing techniques to obtain the best possible model.
publishDate 2023
dc.date.none.fl_str_mv 2023-03-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/84
https://doi.org/10.48168/innosoft.s11.a84
https://purl.org/42411/s11/a84
https://n2t.net/ark:/42411/s11/a84
url https://revistas.ulasalle.edu.pe/innosoft/article/view/84
https://doi.org/10.48168/innosoft.s11.a84
https://purl.org/42411/s11/a84
https://n2t.net/ark:/42411/s11/a84
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/84/105
https://revistas.ulasalle.edu.pe/innosoft/article/view/84/106
https://purl.org/42411/s11/a84/g105
https://purl.org/42411/s11/a84/g106
https://n2t.net/ark:/42411/s11/a84/g105
https://n2t.net/ark:/42411/s11/a84/g106
dc.rights.none.fl_str_mv Derechos de autor 2023 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2023
2023
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 4 No 1 (2023): March - August; 122-137
Innovación y Software; Vol. 4 Núm. 1 (2023): Marzo - Agosto; 122-137
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s11
https://purl.org/42411/s11
https://n2t.net/ark:/42411/s11
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1845894996861911040
score 12.989271
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).