Linear Regression application to predict the popularity index in Spotify
Descripción del Articulo
Currently, streaming music services have become one of the main means of music consumption around the world. Spotify offers music streaming services and covers more than thirty million songs. Every year there is an increase in the production of songs so it is more difficult for a song to establish i...
| Autores: | , , , |
|---|---|
| Formato: | artículo |
| Fecha de Publicación: | 2023 |
| Institución: | Universidad La Salle |
| Repositorio: | Revistas - Universidad La Salle |
| Lenguaje: | español |
| OAI Identifier: | oai:ojs.revistas.ulasalle.edu.pe:article/110 |
| Enlace del recurso: | https://revistas.ulasalle.edu.pe/innosoft/article/view/110 https://doi.org/10.48168/innosoft.s12.a110 https://purl.org/42411/s12/a110 https://n2t.net/ark:/42411/s12/a110 |
| Nivel de acceso: | acceso abierto |
| Materia: | Python Linear Regression Predict Regresión Lineal Predicción |
| id |
REVUSALLE_d5a3bbcbebec19c1d58e473ffa47cb0d |
|---|---|
| oai_identifier_str |
oai:ojs.revistas.ulasalle.edu.pe:article/110 |
| network_acronym_str |
REVUSALLE |
| network_name_str |
Revistas - Universidad La Salle |
| repository_id_str |
|
| spelling |
Linear Regression application to predict the popularity index in SpotifyAplicación de modelo de regresión lineal para predecir el índice de popularidad en la plataforma SpotifyVasquez Alvarez, CesarCoaquira Cuevas, EdithMendoza Hilasaca, EmersonPinto Ñaupa, JeffreyPythonLinear RegressionPredictPythonRegresión LinealPredicciónCurrently, streaming music services have become one of the main means of music consumption around the world. Spotify offers music streaming services and covers more than thirty million songs. Every year there is an increase in the production of songs so it is more difficult for a song to establish itself as a hit in the market. The objective of this work was to apply the Linear Regression modeling technique to find a trend of the data set on the popularity index of songs on the Spotify platform, in this way predict a result with new data that enters. A quantitative methodology was applied based on measurable data that were taken as datasets. As a result, a mean square error of 94.79 and a variance of 0.20 were obtained. The conclusion of the work is that the dataset used was not the ideal according to our objective.En la actualidad los servicios de música en streaming se han convertido en uno de los principales medios de consumo de música alrededor del mundo. Spotify ofrece servicios de transmisión de música y abarca más de treinta millones de canciones. Cada año hay un incremento en la producción de canciones por lo cual es más difícil que una canción se establezca como un hit en el mercado. El presente trabajo tuvo como objetivo aplicar la técnica de modelado de Regresión Lineal para encontrar una tendencia del conjunto de datos sobre el índice de popularidad de las canciones en la plataforma Spotify, de esta manera predecir un resultado con nuevos datos que ingresen. Se aplicó una metodología cuantitativa basada en datos medibles que se tomaron como datasets. Como resultado se obtuvo un error cuadrático medio de 94.79 y una varianza de 0.20. La conclusión del trabajo es que el dataset utilizado no fue el ideal acorde a nuestro objetivo.Universidad La Salle2023-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/110https://doi.org/10.48168/innosoft.s12.a110https://purl.org/42411/s12/a110https://n2t.net/ark:/42411/s12/a110Innovation and Software; Vol 4 No 2 (2023): September - February; 121-135Innovación y Software; Vol. 4 Núm. 2 (2023): Septiembre - Febrero; 121-1352708-09352708-0927https://doi.org/10.48168/innosoft.s12https://purl.org/42411/s12https://n2t.net/ark:/42411/s12reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/110/140https://revistas.ulasalle.edu.pe/innosoft/article/view/110/154https://purl.org/42411/s12/a110/g140https://purl.org/42411/s12/a110/g154https://n2t.net/ark:/42411/s12/a110/g140https://n2t.net/ark:/42411/s12/a110/g15420232023Derechos de autor 2023 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/1102025-07-03T08:02:16Z |
| dc.title.none.fl_str_mv |
Linear Regression application to predict the popularity index in Spotify Aplicación de modelo de regresión lineal para predecir el índice de popularidad en la plataforma Spotify |
| title |
Linear Regression application to predict the popularity index in Spotify |
| spellingShingle |
Linear Regression application to predict the popularity index in Spotify Vasquez Alvarez, Cesar Python Linear Regression Predict Python Regresión Lineal Predicción |
| title_short |
Linear Regression application to predict the popularity index in Spotify |
| title_full |
Linear Regression application to predict the popularity index in Spotify |
| title_fullStr |
Linear Regression application to predict the popularity index in Spotify |
| title_full_unstemmed |
Linear Regression application to predict the popularity index in Spotify |
| title_sort |
Linear Regression application to predict the popularity index in Spotify |
| dc.creator.none.fl_str_mv |
Vasquez Alvarez, Cesar Coaquira Cuevas, Edith Mendoza Hilasaca, Emerson Pinto Ñaupa, Jeffrey |
| author |
Vasquez Alvarez, Cesar |
| author_facet |
Vasquez Alvarez, Cesar Coaquira Cuevas, Edith Mendoza Hilasaca, Emerson Pinto Ñaupa, Jeffrey |
| author_role |
author |
| author2 |
Coaquira Cuevas, Edith Mendoza Hilasaca, Emerson Pinto Ñaupa, Jeffrey |
| author2_role |
author author author |
| dc.subject.none.fl_str_mv |
Python Linear Regression Predict Python Regresión Lineal Predicción |
| topic |
Python Linear Regression Predict Python Regresión Lineal Predicción |
| description |
Currently, streaming music services have become one of the main means of music consumption around the world. Spotify offers music streaming services and covers more than thirty million songs. Every year there is an increase in the production of songs so it is more difficult for a song to establish itself as a hit in the market. The objective of this work was to apply the Linear Regression modeling technique to find a trend of the data set on the popularity index of songs on the Spotify platform, in this way predict a result with new data that enters. A quantitative methodology was applied based on measurable data that were taken as datasets. As a result, a mean square error of 94.79 and a variance of 0.20 were obtained. The conclusion of the work is that the dataset used was not the ideal according to our objective. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-30 |
| dc.type.none.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Journal paper text Artículos originales |
| format |
article |
| status_str |
publishedVersion |
| dc.identifier.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/110 https://doi.org/10.48168/innosoft.s12.a110 https://purl.org/42411/s12/a110 https://n2t.net/ark:/42411/s12/a110 |
| url |
https://revistas.ulasalle.edu.pe/innosoft/article/view/110 https://doi.org/10.48168/innosoft.s12.a110 https://purl.org/42411/s12/a110 https://n2t.net/ark:/42411/s12/a110 |
| dc.language.none.fl_str_mv |
spa |
| language |
spa |
| dc.relation.none.fl_str_mv |
https://revistas.ulasalle.edu.pe/innosoft/article/view/110/140 https://revistas.ulasalle.edu.pe/innosoft/article/view/110/154 https://purl.org/42411/s12/a110/g140 https://purl.org/42411/s12/a110/g154 https://n2t.net/ark:/42411/s12/a110/g140 https://n2t.net/ark:/42411/s12/a110/g154 |
| dc.rights.none.fl_str_mv |
Derechos de autor 2023 Innovación y Software https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Derechos de autor 2023 Innovación y Software https://creativecommons.org/licenses/by/4.0 |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf text/html |
| dc.coverage.none.fl_str_mv |
2023 2023 |
| dc.publisher.none.fl_str_mv |
Universidad La Salle |
| publisher.none.fl_str_mv |
Universidad La Salle |
| dc.source.none.fl_str_mv |
Innovation and Software; Vol 4 No 2 (2023): September - February; 121-135 Innovación y Software; Vol. 4 Núm. 2 (2023): Septiembre - Febrero; 121-135 2708-0935 2708-0927 https://doi.org/10.48168/innosoft.s12 https://purl.org/42411/s12 https://n2t.net/ark:/42411/s12 reponame:Revistas - Universidad La Salle instname:Universidad La Salle instacron:USALLE |
| instname_str |
Universidad La Salle |
| instacron_str |
USALLE |
| institution |
USALLE |
| reponame_str |
Revistas - Universidad La Salle |
| collection |
Revistas - Universidad La Salle |
| repository.name.fl_str_mv |
|
| repository.mail.fl_str_mv |
|
| _version_ |
1846529179766489088 |
| score |
13.057984 |
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).