Linear Regression application to predict the popularity index in Spotify

Descripción del Articulo

Currently, streaming music services have become one of the main means of music consumption around the world. Spotify offers music streaming services and covers more than thirty million songs. Every year there is an increase in the production of songs so it is more difficult for a song to establish i...

Descripción completa

Detalles Bibliográficos
Autores: Vasquez Alvarez, Cesar, Coaquira Cuevas, Edith, Mendoza Hilasaca, Emerson, Pinto Ñaupa, Jeffrey
Formato: artículo
Fecha de Publicación:2023
Institución:Universidad La Salle
Repositorio:Revistas - Universidad La Salle
Lenguaje:español
OAI Identifier:oai:ojs.revistas.ulasalle.edu.pe:article/110
Enlace del recurso:https://revistas.ulasalle.edu.pe/innosoft/article/view/110
https://doi.org/10.48168/innosoft.s12.a110
https://purl.org/42411/s12/a110
https://n2t.net/ark:/42411/s12/a110
Nivel de acceso:acceso abierto
Materia:Python
Linear Regression
Predict
Regresión Lineal
Predicción
id REVUSALLE_d5a3bbcbebec19c1d58e473ffa47cb0d
oai_identifier_str oai:ojs.revistas.ulasalle.edu.pe:article/110
network_acronym_str REVUSALLE
network_name_str Revistas - Universidad La Salle
repository_id_str
spelling Linear Regression application to predict the popularity index in SpotifyAplicación de modelo de regresión lineal para predecir el índice de popularidad en la plataforma SpotifyVasquez Alvarez, CesarCoaquira Cuevas, EdithMendoza Hilasaca, EmersonPinto Ñaupa, JeffreyPythonLinear RegressionPredictPythonRegresión LinealPredicciónCurrently, streaming music services have become one of the main means of music consumption around the world. Spotify offers music streaming services and covers more than thirty million songs. Every year there is an increase in the production of songs so it is more difficult for a song to establish itself as a hit in the market. The objective of this work was to apply the Linear Regression modeling technique to find a trend of the data set on the popularity index of songs on the Spotify platform, in this way predict a result with new data that enters. A quantitative methodology was applied based on measurable data that were taken as datasets. As a result, a mean square error of 94.79 and a variance of 0.20 were obtained. The conclusion of the work is that the dataset used was not the ideal according to our objective.En la actualidad los servicios de música en streaming se han convertido en uno de los principales medios de consumo de música alrededor del mundo. Spotify ofrece servicios de transmisión de música y abarca más de treinta millones de canciones. Cada año hay un incremento en la producción de canciones por lo cual es más difícil que una canción se establezca como un hit en el mercado. El presente trabajo tuvo como objetivo aplicar la técnica de modelado de Regresión Lineal para encontrar una tendencia del conjunto de datos sobre el índice de popularidad de las canciones en la plataforma Spotify, de esta manera predecir un resultado con nuevos datos que ingresen. Se aplicó una metodología cuantitativa basada en datos medibles que se tomaron como datasets. Como resultado se obtuvo un error cuadrático medio de 94.79  y una varianza de 0.20. La conclusión del trabajo es que el dataset utilizado no fue el ideal acorde a nuestro objetivo.Universidad La Salle2023-09-30info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionJournal papertextArtículos originalesapplication/pdftext/htmlhttps://revistas.ulasalle.edu.pe/innosoft/article/view/110https://doi.org/10.48168/innosoft.s12.a110https://purl.org/42411/s12/a110https://n2t.net/ark:/42411/s12/a110Innovation and Software; Vol 4 No 2 (2023): September - February; 121-135Innovación y Software; Vol. 4 Núm. 2 (2023): Septiembre - Febrero; 121-1352708-09352708-0927https://doi.org/10.48168/innosoft.s12https://purl.org/42411/s12https://n2t.net/ark:/42411/s12reponame:Revistas - Universidad La Salleinstname:Universidad La Salleinstacron:USALLEspahttps://revistas.ulasalle.edu.pe/innosoft/article/view/110/140https://revistas.ulasalle.edu.pe/innosoft/article/view/110/154https://purl.org/42411/s12/a110/g140https://purl.org/42411/s12/a110/g154https://n2t.net/ark:/42411/s12/a110/g140https://n2t.net/ark:/42411/s12/a110/g15420232023Derechos de autor 2023 Innovación y Softwarehttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessoai:ojs.revistas.ulasalle.edu.pe:article/1102025-07-03T08:02:16Z
dc.title.none.fl_str_mv Linear Regression application to predict the popularity index in Spotify
Aplicación de modelo de regresión lineal para predecir el índice de popularidad en la plataforma Spotify
title Linear Regression application to predict the popularity index in Spotify
spellingShingle Linear Regression application to predict the popularity index in Spotify
Vasquez Alvarez, Cesar
Python
Linear Regression
Predict
Python
Regresión Lineal
Predicción
title_short Linear Regression application to predict the popularity index in Spotify
title_full Linear Regression application to predict the popularity index in Spotify
title_fullStr Linear Regression application to predict the popularity index in Spotify
title_full_unstemmed Linear Regression application to predict the popularity index in Spotify
title_sort Linear Regression application to predict the popularity index in Spotify
dc.creator.none.fl_str_mv Vasquez Alvarez, Cesar
Coaquira Cuevas, Edith
Mendoza Hilasaca, Emerson
Pinto Ñaupa, Jeffrey
author Vasquez Alvarez, Cesar
author_facet Vasquez Alvarez, Cesar
Coaquira Cuevas, Edith
Mendoza Hilasaca, Emerson
Pinto Ñaupa, Jeffrey
author_role author
author2 Coaquira Cuevas, Edith
Mendoza Hilasaca, Emerson
Pinto Ñaupa, Jeffrey
author2_role author
author
author
dc.subject.none.fl_str_mv Python
Linear Regression
Predict
Python
Regresión Lineal
Predicción
topic Python
Linear Regression
Predict
Python
Regresión Lineal
Predicción
description Currently, streaming music services have become one of the main means of music consumption around the world. Spotify offers music streaming services and covers more than thirty million songs. Every year there is an increase in the production of songs so it is more difficult for a song to establish itself as a hit in the market. The objective of this work was to apply the Linear Regression modeling technique to find a trend of the data set on the popularity index of songs on the Spotify platform, in this way predict a result with new data that enters. A quantitative methodology was applied based on measurable data that were taken as datasets. As a result, a mean square error of 94.79 and a variance of 0.20 were obtained. The conclusion of the work is that the dataset used was not the ideal according to our objective.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-30
dc.type.none.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Journal paper
text
Artículos originales
format article
status_str publishedVersion
dc.identifier.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/110
https://doi.org/10.48168/innosoft.s12.a110
https://purl.org/42411/s12/a110
https://n2t.net/ark:/42411/s12/a110
url https://revistas.ulasalle.edu.pe/innosoft/article/view/110
https://doi.org/10.48168/innosoft.s12.a110
https://purl.org/42411/s12/a110
https://n2t.net/ark:/42411/s12/a110
dc.language.none.fl_str_mv spa
language spa
dc.relation.none.fl_str_mv https://revistas.ulasalle.edu.pe/innosoft/article/view/110/140
https://revistas.ulasalle.edu.pe/innosoft/article/view/110/154
https://purl.org/42411/s12/a110/g140
https://purl.org/42411/s12/a110/g154
https://n2t.net/ark:/42411/s12/a110/g140
https://n2t.net/ark:/42411/s12/a110/g154
dc.rights.none.fl_str_mv Derechos de autor 2023 Innovación y Software
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Derechos de autor 2023 Innovación y Software
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
text/html
dc.coverage.none.fl_str_mv 2023
2023
dc.publisher.none.fl_str_mv Universidad La Salle
publisher.none.fl_str_mv Universidad La Salle
dc.source.none.fl_str_mv Innovation and Software; Vol 4 No 2 (2023): September - February; 121-135
Innovación y Software; Vol. 4 Núm. 2 (2023): Septiembre - Febrero; 121-135
2708-0935
2708-0927
https://doi.org/10.48168/innosoft.s12
https://purl.org/42411/s12
https://n2t.net/ark:/42411/s12
reponame:Revistas - Universidad La Salle
instname:Universidad La Salle
instacron:USALLE
instname_str Universidad La Salle
instacron_str USALLE
institution USALLE
reponame_str Revistas - Universidad La Salle
collection Revistas - Universidad La Salle
repository.name.fl_str_mv
repository.mail.fl_str_mv
_version_ 1846529179766489088
score 13.057984
Nota importante:
La información contenida en este registro es de entera responsabilidad de la institución que gestiona el repositorio institucional donde esta contenido este documento o set de datos. El CONCYTEC no se hace responsable por los contenidos (publicaciones y/o datos) accesibles a través del Repositorio Nacional Digital de Ciencia, Tecnología e Innovación de Acceso Abierto (ALICIA).